Fuzzing USB devices using
frisbeelite

Andy Davis
Research Director
andy.davis ‘at’ ngssecure.com

ngssecure

an nCC group company

An NGS Secure Research Publication
13 January 2012
© Copyright 2011 NGS Secure

http://www.ngssecure.com

http://www.ngssecure.com/

Fuzzing USB devices using Frisbeé Lite

Table of Contents

N) o oo [¥ Lot T o U PO PP PP PP PR PRTOPPRTON 3
2. Communication With USB 0EVICEScceeiuiiiuiiiiiiieeie ettt ettt st st sbe e s s ee s 3
D N o 1o 02U U= T o IV TP UPPPPPOE 4
D R 1= To [N =) PRSPPIt 4
2,30 WVAIUE e bbb sttt et e e bt s he e sa et et e bt e bt e beesbeeeateenreen 4
240 WINOEX ittt b e bt sttt e bt e b e e s he e eat e et e e bt e b e e beesbeeenteenrean 4
D T VY| W= o V-4 o o PSRRIt 4
2.6, StaNdard dEVICE FEQUESES.....uiiiiciiieeicieee ettt ettt et e et e e e st e e e e sebte e e e sbteeessbteeessseaeessnsraeessnes 4
3. Public USB device VUINErabilitiescoceeirieiiiieiee ettt sttt et sbe e 6
% D VT o I ol oY o) I 4 1Y =4 (017N Rt PSR 6
3 B VI o ol oY o] I 4 0 1Y =4 (017) R 7
B, FrISDEE LItO ueiiiiiie ittt ettt e s e st s e s be e e st e s bt e e ate e s be e e s abeesbeeenabeesabeeesareenn 7
4.1, SOftWAre dOWNIOA.....ccueiiiieiie ettt ettt e st e s bee e s beesab e e sabeesneeesbeeenes 7
4.2, INSEAIIALION ceeeiieie e ettt e st e b e st e e e bee e s beesateesabeesbeeesareeeane 8
O T U £ - SNt 13
5. Conclusions and fUrther reSEarChc.oo oottt s 15
6. References and fUurther rEadiNGc.uviiiiiiiii i e e re e e s e e e sbeeeeesanes 15

Page 2 of 15 “,3

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'i‘te’: ;

1. Introduction

At Black Hat USA 2011 | presented “USB — Undermining Security Barriers”™, which detailed a fuzzing
approach that enabled USB devices and hosts to be security tested in a platform-independent manner.
However, this approach required the use of USB test equipment hardware in conjunction with bespoke
fuzzing software (Frisbee). Since then | have needed to fuzz more USB devices than USB hosts and
therefore decided to develop simple fuzzer that could be used to test them.

Frisbee Lite has been written in wxPython for the Windows platform, although only relatively minor
changes would be required to port it to Unix-based platforms. It is a “dumb” fuzzer in that it requires the
user to understand the types of USB request packets that are likely to trigger security flaws, but just
running it with minimal knowledge of the USB protocols would have discovered the two USB bugs that
were used to jailbreak various Apple products in recent years.

This paper will discuss the format of device requests that are sent to USB devices in order to hopefully
provide an insight into areas where software flaws may exist. It will also discuss a number of public
vulnerabilities in USB devices and finally, the installation and usage of Frisbee Lite.

2. Communication with USB devices
This section contains an overview of how communication is performed with a USB device. Much of the

information presented here is also available in the USB Specification v2.0"%. All USB devices respond to
requests on the device’s Default Control Pipe. The requests are made using control transfers and the
parameters are sent to the device in a Setup packet. Table 1 shows the format of a setup packet.

Offset mm

bmRequestType Bitmap Characteristics of request:
D7: Data transfer direction
0 = Host-to-device
1 = Device-to-host

D6...5: Type
0 = Standard
1 =Class

2 =Vendor

3 = Reserved
D4...0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4...31 = Reserved

1 bRequest 1 Value Specific request

2 wValue 2 Value Word-sized field that varies according to
request

4 windex 2 Value Word-sized field that varies according to
request; typically used to pass an index or
offset

6 wlLength 2 Count Number of bytes to transfer if there is a
Data stage

Page 3 of 15 ,d

ngssecure

an ncc group company

Table 1: USB Setup packet format

Fuzzing USB devices using Frisbeé L'ite;

2.1. bmRequestType

This is a bitmapped field that describes the characteristics of the request. For example, it identifies the
direction of the data transfer in the second (data) phase of the control transfer (the direction bit is
ignored if the wlength field is set to zero, hence implying that there is no data stage). There are a
number of standard requests (see Table 2) within the USB specification, in addition to class-specific
requests. Requests can be sent to a USB device, an interface or an endpoint (on the device). Therefore,
the bmRequestType field also includes information about the intended recipient. If the recipient is an
interface or endpoint the windex field specifies the interface or endpoint.

2.2. bRequest
This is the actual request that is being sent (the “Type” bits in the bmRequestType field change the
meaning of this field). Standard requests are detailed in Table 3.

2.3. wValue

The contents of this field are request-specific.

2.4. windex
The contents of this field are request-specific. However, it is often used to specify an endpoint or
interface.

2.5. wLength

This specifies the length of the data transferred during the second phase of the control transfer. If this
field is zero, there is no second (data transfer) phase. On an input request, a device should never return
more data than is indicated by the wLength value; it may return less. On an output request, wlength
should always indicate the exact amount of data to be sent by the host.

2.6. Standard device requests

There are a number of standard device requests, which are the same for all USB devices; these are
detailed in Table 2. USB devices must respond to standard device requests, even if the device has not
yet been assigned an address or has not been configured.

Page 4 of 15 s’d

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'ite;

bmRequestType | bRequest | wValue | windex [wlength _|Data

00000000B CLEAR_FEATURE Feature Zero Zero None
00000001B Selector Interface
00000010B Endpoint
100000008 GET_CONFIGURATION Zero Zero One Configuration
Value
10000000B GET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
100000018 GET_INTERFACE Zero Interface One Alternate
Interface
100000008 GET_STATUS Zero Zero Two Device,
10000001B Interface Interface, or
100000108 Endpoint Endpoint
Status
00000000B SET_ADDRESS Device Zero Zero None
Address
00000000B SET_CONFIGURATION Configuration Zero Zero None
Value
00000000B SET_DESCRIPTOR Descriptor Zero or Descriptor Descriptor
Type and Language Length
Descriptor ID
Index
00000000B SET_FEATURE Feature Zero Zero None
00000001B Selector Interface
000000108 Endpoint
00000001B SET_INTERFACE Alternate Interface Zero None
Setting
100000108 SYNCH_FRAME Zero Endpoint Two Frame Number

Table 2: Standard requests

The values associated with the standard request codes, e.g. GET_DESCRIPTOR, used in Table 2 are
shown in Table 3.

bRequest

GET_STATUS 0
CLEAR_FEATURE
Reserved for future use
SET_FEATURE

Reserved for future use
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE
SET_INTERFACE
SYNCH_FRAME

Table 3: Standard request codes

O 00N O U B WIN -

e S
N = O

Page 5 of 15 s’d

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'ite;

The values associated with the USB descriptor types used in Table 2 are shown in Table 4.

DEVICE 1
CONFIGURATION

STRING

INTERFACE

ENDPOINT

DEVICE_QUALIFIER
OTHER_SPEED_CONFIGURATION
INTERFACE_POWER

Table 4: Descriptor types

00 NO U AN WN

The values associated with the standard feature selectors used in Table 2 are shown in Table 5.

Feature selector

DEVICE_REMOTE_WAKEUP Device 1
ENDPOINT_HALT Endpoint 0
TEST_MODE Device 2

Table 5: Standard feature selectors

As can be seen, the number of different permutations of device request is huge and in a number of
cases, unusual combinations of values supplied in these requests have led to situations where the device
request parsers in USB device drivers have not been capable of processing them, resulting in an
exception or kernel panic. This has led to various publicly disclosed security vulnerabilities in USB
devices.

3. Public USB device vulnerabilities
A number of USB device vulnerabilities have been publicly disclosed and some have been subsequently
exploited. The two most high profile vulnerabilities” relate to Apple products and are known as:

e usb_control_msg(0xA1, 1) or "steaks4uce" exploit
e usb_control_msg(0x21, 2) exploit

As can be seen from the titles, the device request is being sent with the bmRequestType set to the first
value and bRequest set to the second value. More information about these vulnerabilities can be found
on the iPhone Wiki'?'.

3.1. usb_control_msg(0xAl, 1)
A heap overflow exists in the iPod touch 2G boot ROM's DFU (Device Firmware Upgrade) mode when
sending a USB control message of bmRequestType = 0xA1l, bRequest = 0x1. On newer devices, the same

* NGS Secure played no part in either the discovery or exploitation of these vulnerabilities. 3

Page 6 of 15
ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'ite;

USB message triggers a double free() vulnerability when the image upload is marked as finished, also
rebooting the device (but this second vulnerability is not exploitable).

3.2. usb_control_msg(0x21, 2)

A null pointer dereference vulnerability exists in the versions of iBoot/iBSS/iBEC found in firmware
versions 3.1/3.1.1 and 3.1.2 on all iDevices. The vulnerability existed because of a missing check of the
contents of a processor register. Often null pointer dereference vulnerabilities cannot be exploited,
however in this instance it can because the MMU (Memory Management Unit) maps whatever is
running (LLB, iBoot, etc.) to address zero so that if an exception vector is triggered, it would jump to the
one designed to be used with what is running, as opposed to jumping to what is normally located at
address zero, the boot ROM.

So, it can be seen that exploitable vulnerabilities can be discovered in the driver software running on
USB devices, which led to the development of Frisbee Lite.

4. Frisbee Lite

Frisbee Lite is a “dumb” USB device fuzzer —i.e. the intelligence is in the user. It enables any single USB
device request to be created and sent or multiple requests iterated through using a brute-force fuzzing
approach. Based on the information presented in Section 2, the reader should now have a clearer idea
of values to set within Frisbee Lite in order to create situations where a software flaw (and potential
security vulnerability) may lie.

4.1. Software download
There are a number of prerequisites that need to be downloaded and installed in order to use Frisbee
Lite. These are detailed in this section.

e Download and install Python (if you haven’t already got it) - http://www.python.org/getit/

e Download and install wxPython - http://www.wxpython.org/download.php#stable

e Download and extract Fribseelite.zip - http://www.ngssecure.com/research/research-
overview/Public-Tools.aspx

Page 7 of 15 s’d

ngssecure

an ncc group company

http://www.python.org/getit/
http://www.wxpython.org/download.php#stable
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx
http://www.ngssecure.com/research/research-overview/Public-Tools.aspx

Fuzzing USB devices using Frisbeé Lite

4.2. Installation
After extracting the Frisbee Lite zip file, from the “dependencies” directory, install pyusb:

Extract the zip and type:

python setup.py install

Next, the PID (Product ID) and VID (Vendor ID) of the device to be fuzzed must be identified - these are

the unique values that identify the device to your PC.

In Device Manager, right click on the device to be fuzzed and select “Properties”:

-_-;—1 Device Manager

=101

File Action View Help

&= 7| E|Hm &R &S

ﬁ Imaging devices
2 Keyboards
- libusb-win32 devices
U Mice and other pointing devices
1= Modems
B Monitors
¥ Metwork adapters
=E1E] Other devices

i Broadcom USH
o |liy Unknown device
[-£7] PCMCIA adapters
[]---‘3 Ports {COM &LPT)
[+~ Processors
[-#E1 5D host adapters
|12 Security Devices
8
E
£
£

f--| | Smart card readers

H-% Sound, video and game controllers

H-4; Storage controllers

+|-7M8| System devices

B i Universal Serial Bus controllers

IUpdate Driver Software...
Disable

Uninstall

Generic USE Hub
Generic USB Hub
Intel(R) 5 Series/34
Intel(R) 5Series/34 Scan for hardware changes
USB Compaosite Dev
58 Compts D
USB Root Hub

USE Root Hub

d Host Controller - 3834
d Host Controller - 383C

L]

|Dpens property sheet for the current selection.

Page 8 of 15

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé Lite

Then select the “Details” tab and select “Hardware Ids”:

Dell Wireless 5540 HSPA Mini-Card Device : 5[

-Genemll Driver Details

Dell Wirsless 5540 HSPA Mini-Card Device

Value

USBMVID_413CAPID_S1842REV_000D
USBNVID_413CAPID_81284

oK I Cancel

In the example above, the PID = 0x8184 and the VID =0x413c

From the “dependencies” directory, extract libusb and in the “bin” directory run “inf-wizard.exe”:

Page 9 of 15 “,3

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'ite;

gz libusb-win32 Inf-Wizard o] S

— Information

This program will create an .inf file for your device.

Before dicking "Mext™ make sure that your device iz connected to the system.

Cancel |

Click “Next”

sen libusb-win32 Inf-Wizard =100]

—Device Selection

Select your device from the list of detected devices below. If your device isn't listed
then either connect it or dick "™ext™ and enter your device description manually,

Vendor ID | Product ID | Description :I
Ox413C 0x8184 Dell Wireless 5540
Ox0ASC 0x 5800 Contacted SmartCard (Interface 1)
Ox0ASC 0x 5800 Broadcom USH (Interface 0)
Ox05CA 0x1814 Integrated Webcam (Interface 0)
Ox05AC 0x1297 iPhone
Ox045E Oxi0040 Microsoft 3-Button Mouse with InteliEye(TM)
-

1| | *

< Back Mext = Cancel

Select the device to fuzz and click “Next”

Page 10 of 15 "6

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé Lite

sen libusb-win32 Inf-Wizard =10 %]

—Device Configuration
Vendor ID (hex format) I 0x05AC
Product ID (hex format) I 0x1297
MI (hex format) I
Manufacturer Mame I Apple, Inc.
Device MName I iPhone

Cancel

Verify that the PID and VID identified earlier are correct for the device to be fuzzed. Click “Next”

En Save As ll
(j)(j) 5 ~ Libraries + Documents = v & I Search Documents \Q‘
Organize * MNew folder q= - -ﬁ-

gﬂ bak.Documents ;I

) bokcicures Documents library
(=] .

Arrange by: Folder =
Indudes: 2 locations

3 Documents
)] Music Name “ - | Date modified Type Size IL
k= Fictures
= . amda4 25/10/2011 14:54 File folder
gﬂ Videos
. Arduino 18/05/2011 08:57 File folder
18 Computer . BlackBerry 140242011 12:07 File folder
:‘% Local Disk (C:) J Bluetooth Exchange Folder 08/02/201109:24 File folder
"% NGS5ecure_Deliver | Camtasia Studio 06/10/2011 17:07 File folder
LR NGSSecure_Sales (| ias4 25/10/2011 14:54 File folder
SR NGSSecure_Admin | license 25/10/2011 14:54 File folder
K& Apple iPhone
{E My Shapes 01/03/201109:28 File folder
@“! Network . Outlook Files 14/07/2011 14:47 File folder
j =l N&MNIM11 18.80 Fila frldar LI
File name: I j
Save as type: I\nf files (*.inf) j

“ Hide Folders | Save I Cancel |

Click “Save”

Page 11 of 15

33

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé L'ite;

sen libusb-win32 Inf-Wizard =10 %]

—Information
A windows driver installation package has been created for the
following dewvice:
Vendor ID: 0x05AC
Product ID: 0x1297
Device description: iPhone
Manufacturer: Apple, Inc.

This package contains libusb-win32 w1.2, 5.0 drivers and support for the following
platforms: x86, k64, ia64.

Install Maow..

Click “Install Now”

@J Windows can't verify the publisher of this driver software

<% Don't install this driver software
: You should check your manufacturer's website for updated driver software for your
device.

< Install this driver software anyway

Only install driver software obtained from your manufacturer's website or disc.
IInsigned software from other sources may harm your computer or steal information.

j See details

Click “Install this driver software anyway”

Everything should now be installed.

Page 12 of 15

2

ngssecure

an ncc group company

Fuzzing USB devices using Frisbeé Lite

4.3. Usage

Run “Frisbeelite.py” and the GUI below should be displayed:

_imix
File
e Il ngssecure
Bt G PR ComETy
frisbeelite
Start values Fuzz? Endvalues
bmRequestType: Iﬁ > |ﬁ-’ =
bRequest: [00 o [
w\alue: f oo x]foo o =l =]
windex: |nn j|00 = |FF leF |
wlength: foo =fjoo]
Single: Fuzzer controls: Progress:
|connection Status: Mot connected [Fuzzing Status: Mot fuzzing

The first step is to select the USB device that will be fuzzed. Click “File” -> “Select USB device”:

Select Device x|

Insert USE device details

p: |12 =] |97 x| wmp: Jos x| |ad 7]
oK I Cancel |

Enter the PID and VID values for the device and click “OK”

All elements within a USB device request can be fuzzed, although it was considered that fuzzing through
all the wLength values would most likely prove fruitless and therefore, a static value can be set for this
field. Fuzzing operation is simple, the values which are to be fuzzed are selected using the checkboxes,
the start and stop values are then chosen and the start button is pressed e.g.

Page 13 of 15 \,3

ngssecure

an ncc group company

Frisbee Lite

frisbeelite

dvalues

=l

File
-E’L'.?"-" [:

Startvalues Fuz? En
bmRequestType: |80 -
bRequest: [zl F o
wWalue: for =l T |F
windex: oo =fjoo #| T |#f
wlLength: Iff jlff j
Single: Fuzzer controls: Progress:

© 00

L I L

=l

| |Connecﬁor1 Status: Not connected |Fuzzing Status: Mot fuzzing S

The console output shows the fuzzing detail:

bReques:

]
bRequ

bRequ
bRequ

bRequest:

bRequest:
bRequ
bRequ

]
bRequ
bRequ
FRequ

1
bRequ
bRequ
FRequ

00 wvalue: 0100 w 0000 wLength:

wvalue: 0100 i

0
0100
0100

|:J 000 wi

The output is also written to a log file in the current directory.

Finally, the “Single” button allows a single USB request to be sent using the currently selected values. 1

Page 14 of 15

ngs

an nce group company

Fuzzing USB devices using Frisbeé Lite

5. Conclusions and further research

There are a large number of different USB device requests that can be generated and sent to a device
under test, which is why fuzzing is an appropriate approach to security testing USB devices. Although no
inherent “intelligence” has been designed into Frisbee Lite, it still provides powerful capabilities to
identify software flaws and potential security vulnerabilities.

Possible additions for future versions of Frisbee Lite may include:

e Instrumentation using either ICMP to check if the device is still accessible over the network or
first establishing a “known good” request that results in a repeatable response in order to check
if the USB stack is still functioning on the target device

e A greater degree of granularity in the way that the bmRequestType values are fuzzed, to make
the tool more intuitive to use

e The inclusion of specific test cases that are known to be likely to trigger software flaws in USB
driver software.

Hopefully, the tool will be useful to security researchers and pentesters. Any feedback can be provided
to me directly via the email address at the beginning of the paper.

6. References and further reading

1 - http://www.ngssecure.com/Libraries/Document Downloads/USB - Undermining Security Barriers-
BlackHat-USA-2011-Andy Davis-NGS Secure.sflb.ashx

2 - http://www.usb.org/developers/docs/usb 20 101111.zip

3 - http://theiphonewiki.com/wiki/index.php?title=Main Page

Page 15 of 15 "é

ngssecure

an ncc group company

http://www.ngssecure.com/Libraries/Document_Downloads/USB_-_Undermining_Security_Barriers-BlackHat-USA-2011-Andy_Davis-NGS_Secure.sflb.ashx
http://www.ngssecure.com/Libraries/Document_Downloads/USB_-_Undermining_Security_Barriers-BlackHat-USA-2011-Andy_Davis-NGS_Secure.sflb.ashx
http://www.usb.org/developers/docs/usb_20_101111.zip
http://theiphonewiki.com/wiki/index.php?title=Main_Page

