Practical New Developments on BREACH

Dimitris Karakostas” Dionysis Zindros"
National Technical University of Athens University of Athens
dimit.karakostas @gmail.com dionyziz@gmail.com
Abstract

We propose new methods to practically extend the BREACH attack against
the most commonly used ciphers. We describe a command-and-control tech-
nique to exploit plain HTTP connections in order to perform the attack in a
persistent manner. We also present new statistical methods that can be used
to bypass noise induced by the usage of block ciphers, as well as noise present
in usual web applications. In that direction, we developed a new framework,
Rupture, to explore parallelization and optimization techniques. Finally, we
propose novel mitigation techniques that could effectively eliminate this attack.

1 Introduction

In 2012, side-channel compression attacks were first successfully used against TLS
in CRIME [1]. CRIME targeted HTTPS requests, but it was mitigated by disabling
compression at the TLS level [2].

In 2013, BREACH [3] was the sensation of Black Hat USA, introducing an attack
vector that exploited compression on HTTP responses to compromise SSL connec-
tions. Specifically, it used the characteristics of the DEFLATE algorithm [4], the
basis of most compression applications today, to steal secrets from applications using
stream ciphers.

Three years later, RC4 is considered unsafe [5] and most websites use the AES
block cipher. Some services, such as Facebook, also went on to incorporate mecha-
nisms to prevent BREACH [6]. However, the fundamental aspects of BREACH are
still not mitigated and popular websites, including Facebook, continue support for
vulnerable end-points.

Our work demonstrates that BREACH can evolve to attack major web applica-
tions, confirming the fact that TLS traffic is still practically vulnerable.

We incorporate statistical methods to bypass noise, induced either due to block
ciphers or random data included in the response plaintext. This allows us to steal se-
crets that were not previously considered targets of BREACH, as long as the targeted

“Research supported by ERC project CODAMODA, project #259152.

website offers a proper attack end-point. We describe two such end-points on widely
used applications, Facebook Chat and Gmail.

Over the course of our work we developed Rupture, an open source framework
that enables BREACH and similar web-based attacks. Development focused mainly
on extensibility and scalability, resulting in a fairly modular design, allowing for easy
future analysis and experiments on different parts of the tool.

We conclude that all existing mitigation mechanisms are insufficient and can be
bypassed or are not practical. Finally, we propose novel mitigation mechanisms that
completely protect against such attacks.

2 Attack model

2.1 Attack assumptions

The original BREACH paper described specific assumptions in order for the attack
to be able to work. In this work, we relax some of these assumptions.

Firstly, the target website should use HTTPS and compress the response plaintext.
gzip is the most commonly used compression implementation on the web, although
all compression algorithms that use LZ77 [7] are sufficient.

It is important to mention that LZ77 uses a 32KB window, regarding the distance
of the compressed literal. Given that, the attacker needs to verify that the secret and
the reflection are within that window, otherwise LZ77 will not apply.

BREACH assumed that the target website uses stream ciphers and has zero noise.
However, block ciphers, especially AES, are the most commonly used encryption
ciphers today. We extend the attack on block ciphers and render the vast majority of
websites practically vulnerable to the attack.

The target website should also provide an end-point, where an arbitrary URL
parameter is reflected in the response along with the secret. This chosen plaintext
should be included in the same compression context as the secret. We describe such
end-points within Gmail and Facebook, although many other websites expose similar
vulnerabilities.

2.2 BREACH attack anatomy

The first step is to gain control of the victim's network. The attacker is able to inject
code to the victim's machine for execution. This code can issue adaptive requests to
the target service.

Our injector injects the client code in all unauthenticated HTTP responses that
the victim receives. This Javascript code is then executed by the victim's browser in
the context of the respective domain name.

The script issues multiple requests to the target website, which are sniffed and
analyzed.

The client script runs in a different context from the target website. Thus, it is
subject to same-origin policy [8] and cannot read the plaintext or encrypted responses.

VICTIN

1000 HTTPS REGULARKTTP @A
M REQUESTS BROWSING AW

\ /' ~ f
\ A~ , ¥,
28 {3 £8 eh
\
:}_\% S .Sé:fﬂ?;‘
@r || = S/
>\ o 7
%\ g /
\ 3 !

X

ATTACKER
Figure 1: Attack model

However, the encrypted requests and responses are available to the sniffer through
direct network access. By comparing the encrypted lengths, information about the
corresponding plaintext length relationships can be deduced.

Each request contains chosen data, such as a URL parameter, that is reflected
in the response. As these requests are made from the victim's browser, they contain
authentication cookies which authenticate the user to the target service. This results
in the response body containing the secret, so both the reflection and the secret will
be compressed and encrypted together.

A successful attack completely decrypts a portion of the plaintext. The portion of
the plaintext which the attack tries to decrypt is the secret. That portion is identified
through an initially known prefix which distinguishes it from other secrets. Each byte
of the secret can be drawn from a given alphabet, the secret's alphabet.

At each stage of the attack, a prefix of the secret is known, because that portion
of the secret has already been successfully decrypted. The prefix decrypted grows
until the whole secret becomes known, at which stage the attack is completed. Due
to length leak, compressed plaintext that contains the correct candidate will be shorter
and so will the encrypted ciphertext.

2.3 Alternative secrets

The original BREACH attack targeted CSRF tokens and proposed mitigation meth-
ods based on this target. In fact every part of the compressed plaintext is a possible
secret. For example, this could include private messages, e-mail communication and
financial records.

Noise

<base href="https://mail.qoogle.com/mail/u/0/xfpugq7uid3dzaf-/)" />
value="?&at=AF6bupMJX-9CU4zxp362SDbN49%0 j is=q" />

type="hidden" name="nredir" value="?&g=blackhatblackhat&am
/><input type="hidden" name="search' e="guery" /><div

class="noMatches">No results for{ _blackhatblackhat9/div><scrip

type="text/javascript"> .
var token="AF6bupMJX-9CU4zxp362SDbN49045nMjSg" ;var Reflection

searchPageLinks=dccument .getFlementsByClassName("searchPageLin
for(i=0;i<searchPagelLinks.length;i++)searchPageLinks[i].onclic

Figure 2: Response with reflection and noise

3 Statistical methods

3.1 Block alignment

Block ciphers provide a greater challenge compared to stream ciphers, when it comes
to telling length apart, since stream ciphers provide better granularity. That is because
block ciphers round length to A-bits, where)\ is the block size, by adding padding.

In order to bypass this, it is possible to introduce artificial noise, which will force
the creation of additional blocks, if necessary. Theoretically, it would be enough to
issue 16 x more requests to achieve block alignment. At this point, the correct candi-
date would result in one less block, which in turn would provide a measurable length
difference. Block alignment techniques have already been explored in the literature
[9].

However, introduction of artificial noise is actually tricky. Firstly, noise should
be carefully constructed to avoid being compressed with itself. Secondly, each added
symbol will alter the Huffman coding in a different way, since the plaintext's sym-
bol frequency distribution will be altered. Even if the noise includes symbols that do
not appear in the rest of the plaintext, the Huffman tree will be expanded and, con-
sequently, the length of the compressed text will increase, in a manner that cannot
always be predicted.

3.2 Noisy end-points

In order to bypass noise, it should be enough to enforce statistical methods. For that
matter, it is possible to issue multiple requests per candidate alphabet symbol and
calculate the mean response length.

Given uniform noise with maximum compressed length m, the attack is expected
to work in O(n|X|y/m), where |X] is the length of the alphabet and n is the length
of the secret. Due to the Law of Large Numbers, length converges to correct results.

4 Optimization techniques

4.1 Divide and conquer

Up to this point, the characters of the alphabet were tested sequentially. However, it
is possible to use parallelization, that could effectively reduce the attack's time.

The idea behind this method is based on divide-and-conquer. Specifically,
instead of testing one character at a time, concatenated with the known prefix, we
split the known alphabet into two candidate alphabet subsets which are tried inde-
pendently.

~(01{0,1,2,3,4,5,6,7,8,9}

i)

(
A

{ 0,1,2 }'\ \‘7\ [3,4 }

/ e

Figure 3: Divide and Conquer

The attack initially assumes the next unknown byte of the secret can come from
the secret's alphabet, but drills down and rejects alphabet symbols until only one can-
didate symbol remains. At each stage of the attack for one byte of the secret, there
is a certain known alphabet which the next byte can take. This known alphabet is a
subset of the secret's alphabet.

Using this method, at each step of the attack two different requests are made. The
first corresponds to the top half of the alphabet and the second to the bottom half.

This method reduces the time of the attack from O(|3]) to O(log|X|), which for
example results in a 6x speedup, given a candidate alphabet of 64 symbols.

4.2 Request soup

A problem with encrypted responses is the fact that it is not possible to safely deter-
mine which packet corresponds to which request, when requests are pipelined by the
browser. That way if the attacker was to issue requests sequentially, they would have
to ensure all response packets for each request have arrived, before issuing the next
one.

However, it is possible to avoid this delay, by making samplesets, each one con-
taining multiple requests for a specific symbol. For each sampleset, responses would
then come pipelined and it would not be possible to tell them apart. However, the
total length of the capture can still be measured and divided by the known amount of

requests that the sampleset contains. This would be enough to calculate the desired
mean length.

This method offers a speedup of up to 5x, considering a 200 ms delay and a 40
ms round trip time.

4.3 Browser parallelization

Browsers allow in general up to 6 parallel HTTP requests, although this may differ de-
pending on the browser application and release. This allows issuing multiple parallel
requests and collecting samples at the same time, giving the attack a 6 x speedup.

Each parallel request cannot adapt based on previous results. However, we need
to collect multiple samples per candidate to perform statistical analysis and extract
the mean. These samples pertain to the same candidate and can be collected non-
adaptively.

S Vulnerable end-points

We present two case studies where our findings apply, Gmail and Facebook Chat.
Both these services use AES and expose noisy end-points.

5.1 Gmail

Gmail uses an authentication token, which consists of random digits, letters and
dashes, generated every time the user logs into the account. The fact that it does
not change very often is convenient because it allows the attacker to collect multiple
samples for this secret.

It also provides a mobile search functionality, https://mail.google.com/
mail/u/0/x/7s=q\&q="search_string", that uses POST. However, GET still
works, returning an error page that contains the authentication token and reflects the
GET parameter. This covers our reflection assumption.

The noise in this mobile end-point consists only of a randomly generated token.
This small amount of noise allows us to complete the attack faster.

Attack bootstrapping is also trivial in this case, since all authentication tokens,
regardless of login or account, contain a fixed prefix, specifically "AF6bup".

5.2 Facebook Chat

Facebook has launched a mechanism to specifically prevent BREACH against its
CSREF tokens.

However, it is a good case study to illustrate that there are more secrets in addition
to CSRF tokens. It provides a mobile version, Touch, that allows search on messages
via GET, using the following URL https://touch.facebook.com/messages?
g="search_string". This search query is reflected in the search results page, along
with the last message of the 5 latest conversations, regardless of the search results.

Instead of stealing the user's CSRF token, we can therefore steal one of these private
messages.

At this point, it might be reasonable to separate secrets from user input, as the
original BREACH paper recommends. However, in this case this distinction is not
possible. In case the attacker does not have access to a reflection mechanism via URL
parameters, it is possible to issue the attack as follows. First, the attacker befriends
the victim on Facebook. Then, to execute the attack, specially crafted private mes-
sages would be sent to the victim and be compressed together with the other 4 target
messages.

6 Rupture

Rupture is a framework for conducting network attacks against web services. It is
focused on compression-attacks, but provides a generalized scalable system for per-
forming any attack on web services which requires a persistent command-and-control
channel as well as attack adapation. Rupture is suitable for any network chosen-
plaintext attack.

Rupture was designed because all the available attack means to conduct BREACH
before it were at the proof-of-concept level and did not provide a productized robust
system that can work in real conditions. As researchers, we spent a lot of time building
separate proof-of-concept implementations of BREACH and invested a lot of time
to mount attacks against specific end-points. Our motivation was that it takes a lot of
effort to conduct such an attack without the appropriate tools.

With rupture, our aim was to make it easier to mount such attacks and provide
reasonable pre-configured defaults, targets, and attack strategies that can be used in
practice or modified to suit the need of new attacks. The framework is designed
specifically to allow for further investigations on both the practical and theoretical
side. On the practical side, our network sniffing and injection components are mod-
ular and replaceable. On the theoretical side, our analysis and strategy core is in-
dependent of data collection means, allowing theoretical cryptographers to verify or
reject statistical analysis hypotheses through experimental adaptive sample collec-
tion.

6.1 Injector

The injector component is responsible for injecting code to the victim's computer for
execution. We use Bettercap [10] to perform the HTTP injection. The injection is
performed by ARP spoofing the local network and forwarding all traffic in a man-
in-the-middle manner. It is simply a series of shell scripts that use the appropriate
bettercap modules to perform the attack.

Since all HTTP responses are infected, this provides for greatly increased robust-
ness.

RUPTURE ARCHITECTURE

avita HSTS

% HTTps| TARGET

VICTIM T .
AMAZON I
EBAY uf g
CNN Q|8
DEVIANTART By v
8 HTTP
VICTMNETWORK = L L
T
REAL-TIME —. HTTP [orrateay]
NODE.JS] f STRATEGY o
SERVICE wiARRIT —— | ANALYST ¢
H BACKEND
DIANGO
ADVERSARY ‘ i
ADVERSARY NETWORK SGLITE DB

Figure 4: Rupture Architecture

The injector component needs to run on the victim network and as such is light-
weight and stateless. It can easily be deployed on a machine such as a raspberry pi,
and can be used for massive attacks. Multiple injectors can be deployed to different
networks, all controlled by the same central command-and-control channel.

6.2 Client

The client contains minimal logic. It connects to the real-time service through a
command-and-control channel and registers itself there. Afterwards, it waits for work
instructions by the command-and-control channel, which it executes. The client does
not take any decisions or receive data about the progress of the attack other than
the work it is requested to do. This is intentional so as to conceal the workings of
the adversary analysis mechanisms from the victim in case the victim attempts to
reverse engineer what the adversary is doing. Furthermore, it allows the system to be
upgraded without having to deploy a new client at the victim's network, which can be
a difficult process.

As a regular user is browsing the Internet, multiple clients will be injected in
insecure pages and they will run under various contexts. All of them will register
and maintain an open connection through a command-and-control channel with the
real-time service. The real-time service will enable one of them for this victim, while
keeping the others dormant. The one enabled will then receive work instructions to
perform the required requests. If the enabled client dies for whatever reason, such as
a closed tab, one of the rest of the clients will be waken up to take over the attack.

6.3 Real-time

The real-time service is a service which awaits for work requests by clients. It can
handle multiple targets and victims. It receives command-and-control connections
from various clients which can live on different networks, orchestrates them, and tells
them which ones will remain dormant and which ones will receive work, enabling
one client per victim.

The real-time service is developed in node.js [11]. It maintains open web socket
command-and-control connections with clients and connects to the backend service,
facilitating the communication between the two.

6.4 Sniffer

The sniffer component is responsible for collecting data directly from the victim's
network. As the client issues chosen plaintext requests, the sniffer collects the re-
spective ciphertext requests and ciphertext responses as they travel on the network.
These encrypted data are then transmitted to the backend for further analysis and
decryption.

Our sniffer implementation runs on the same network as the victim. It is a Python
program which uses scapy [12] to collect network data.

The sniffer exposes an HT'TP API which is utilized by the backend for controlling
when sniffing starts, when it is completed, and to retrieve the data that was sniffed.

6.5 Backend

The backend is responsible for strategic decision taking, statistical analysis of sam-
ples collected, adaptively advancing the attack, and storing persistent data about the
attacks in progress for future analysis.

The backend talks to the real-time service for pushing work out to clients. It also
speaks to the sniffer for data collection.

It is implemented in Python using the Django framework [13] and exposes a
RESTful API via HTTP to which the real-time services makes requests for work.

7 Mitigation

7.1 Failure of existing mechanisms

The original BREACH paper proposed many mitigation mechanisms, some of which
are employed in real-world web applications.

Nevertheless, we have shown attack methodologies which defy these techniques.
Specifically:

* Length hiding: As mentioned in the BREACH paper, this method can be
bypassed using multiple requests. Indeed we have implemented the collection
of samplesets containing multiple samples in Rupture.

» Separating secrets from user input: Contrary to the findings of the origi-
nal BREACH paper, we have illustrated through the Facebook case study that
secrets and user input can be inseparable.

* Disabling compression: This mitigation is impractical in real-world systems.

* Masking secrets: This method requires doubling the size of the masked secret,
which would be impractical for systems that offer many secrets, such as social
networks.

* Request rate-limiting: This mitigation simply slows down the attack and does
not prevent it.

7.2 First-party cookies

The feasibility of the attack lies on the fact that the attacker can utilize the target
service as a compression oracle and retrieve encrypted compressed secrets along with
chosen plaintext data.

This is possible due to the fact that authentication cookies are included in cross-
origin requests. However, this inclusion is completely unnecessary for most web ap-
plications. The ability to mark cookies as first-party only will eliminate the existence
of the oracle.

The first-party cookies proposal [14] describes such a mechanism, with the pur-
pose of avoiding CSRF attacks. Interestingly, the same mechanism can be used to
defend against compression side-channel attacks and eliminates the possibility com-
pletely.

This proposal is still in draft stage and has not been implemented in any browser.
We urge browser vendors to adopt it immediately and web service authors to opt-in.

8 Future work

Further statistical analysis could probably result in better results. Given that noise is
a random variable, assuming the attacker has knowledge of its properties, it would be
useful to investigate how other aspects of the distribution, such as higher moments,
can be used in the analysis.

The attack framework assumes a target service to be attacked. Typically this
target service is a web service which uses TLS. Specifically, we are targeting ser-
vices that provide HTTPS end-points. However, this assumption can be relaxed and
attacks against other similar protocols are possible. Any protocol that exchanges en-
crypted data on the network and for which a theoretical attack exists can in principle
be attacked using Rupture. We designed Rupture to be a good playground for exper-
imentation for such new attacks. Examples of other encrypted protocols for which
attacks can be tested include SMTP and XMPP.

This attack requires the victim has Javascript enabled. It is worthy exploring
whether the attack is still possible when Javascipt is disabled.

10

9 Acknowledgments

This research was conducted at the Cryptography & Security lab at the University of
Athens and the National Technical University of Athens.

We would like to thank Eva Sarafianou for her help in developing Rupture and
Angelo Prado, of the original BREACH team, for his continued support.

References

[1] J. Rizzo, T. Duong: The CRIME attack, Ekoparty, 2012.

[2] D. Goodin, Crack in Internet’s foundation of trust allows HTTPS session hi-
jacking, Ars Technica, 2012.

[3] Y. Gluck, N. Harris, A. Prado, BREACH: Reviving the CRIME attack, Black
Hat USA, 2013.

[4] [online] URL: https://en.wikipedia.org/wiki/DEFLATE [cited March
2016]

[5] A.Popov, Prohibiting RC4 Cipher Suites, RFC 7465, 2015.

[6] [online] URL.: https://www.facebook.com/notes/
protect-the-graph/preventing-a-breach-attack/
1455331811373632 [cited March 2016]

[7] J. Ziv, A. Lempel, A universal algorithm for sequential data compression, In-
formation Theory, IEEE Transactions, vol. 23, 1977.

[8] [online] URL.: https://en.wikipedia.org/wiki/Same-origin_
policy [cited March 2016]

[9] B. Moller, T. Duong, K. Kotowicz, This POODLE Bites: Exploiting the SSL
3.0 Fallback, September 2014.

[10] [online] URL: https://www.bettercap.org/ [cited March 2016]
[11] [online] URL: https://nodejs.org/en/ [cited March 2016]

[12] [online] URL: http://www.secdev.org/projects/scapy/ [cited March
2016]

[13] [online] URL: https://www.djangoproject.com/ [cited March 2016]

[14] M. West, First-Party-Only Cookies, RFC Internet-Draft, 2015.

11

