
Rupture
A framework to break HTTPS

Dimitris Karakostas

HTTPS is broken

• BREACH broke HTTPS + RC4 in 2013

• People upgraded to AES – thought they were safe

Today...

• We show TLS + AES is still broken

• HTTPS can be decrypted

Overview

• Compression side-channel attacks

• Our contributions

• Statistical methods

• Attacking block ciphers

• Attacking noise

• Optimization techniques

• Rupture architecture

• Mitigation recommendations

Compression side-channel attacks

• CRIME
• [2012] Thai Duong, Juliano Rizzo

• Exploits HTTP request compression

• Target: Cookies

• Mitigated

• BREACH
• [2013] Angelo Prado, Neal Harris, Yoel Gluck

• Exploits HTTP response compression

• Target: CSRF tokens

• Still feasible

Attack anatomy

Length leaks

|E(A)| < |E(B)| ⇔ |A| < |B|

Let’s attack Gmail

• m.gmail.com mobile Gmail view

• Mobile search functionality uses HTTP POST
– but HTTP GET still works :)

• CSRF token included in response – valid for all of Gmail

Noise

Noise

Reflection

Noise

Secret

Reflection

• Attacker knows part of secret
• Uses it in reflection

• Attacker knows part of secret
• Uses it in reflection
• Guesses next character
• Compressed/encrypted response is shorter if right!

Original BREACH

Target website assumptions:

• Uses HTTPS
• Compresses response using gzip
• Contains end-point that reflects URL parameter
• Uses stream cipher
• Response has zero noise

Target goal:

1. Steal secret in HTTPS response (CSRF tokens)
2. Use CSRF to impersonate victim client to victim server

Our contributions

Our contributions

We extend the BREACH attack

1. Alternative secrets

2. Attack noisy end-points

3. Attack block cipher end-points

4. Optimize attack

5. Novel mitigation techniques

Alternative secrets

• Not only CSRF tokens can be stolen

• Gmail email bodies

• Facebook chat messages

• Anything!

• Masking CSRF tokens is not enough

Statistical methods

Noise generators

Noise == Response part that changes per request

• Web app noise: Timestamps, random token

• Huffman header encoding

• Huffman tree changes due to block alignment padding :(

• We can’t predict how it changes – plaintext unknown

• Connection: close / keep-alive

• Content-encoding: chunked – boundaries may change

Statistical methods

• We can attack noisy end-points

• Multiple requests per alphabet symbol

• Take mean response length

• m-sized noise → attack works in O(n|Σ|√m)

• m = (max response size) - (min response size)

• Length converges to correct results (LLN)

Statistical methods against block ciphers

• Everyone uses block ciphers

• Statistical methods break them

• We introduce artificial noise

• Block ciphers round length, e.g. AES128 to 128-bits

• In practice 16x more requests

• Blocks aligned → Length difference measurable

Block alignment with artificial noise

• For each candidate, send 16 requests

• Pad each request with artificial noise

• 0…15 additional random bytes in reflection

• This will cross a block boundary

• Ideally, symbols that don’t appear elsewhere

secretXYZ (compressed: 16)

secreuXY (compressed: 16)

secrevXY (compressed: 16)

Z (compressed: 1)

Z (compressed: 1)

secretXY (compressed: 15)

secreuXY (compressed: 16)

secrevXY (compressed: 16)

AES128 Block

Additional observed block

One sampleset in a batch: A single candidate (‘a’)

Target end-point

One sampleset in a batch: A single candidate (‘a’)

Reflected parameter

One sampleset in a batch: A single candidate (‘a’)

Target end-point

Reflected parameter Reflected value

One sampleset in a batch: A single candidate (‘a’)

Target end-point

Reflected parameter Reflected value

Known secret

Target end-point

One sampleset in a batch: A single candidate (‘a’)

Reflected parameter Reflected value

Known secret

Target end-point

Candidate

One sampleset in a batch: A single candidate (‘a’)

Reflected parameter Reflected value

Known secret

Target end-point

Candidate

Huffman pool

One sampleset in a batch: A single candidate (‘a’)

Reflected parameter Reflected value

Known secret

Target end-point

Candidate

Huffman pool

Block alignment alphabet

One sampleset in a batch: A single candidate (‘a’)

Reflected parameter Reflected value

Known secret

Target end-point

Candidate

Huffman pool

Block alignment alphabet

Unreflected anti-caching

One sampleset in a batch: A single candidate (‘a’)

Optimizations

Optimizations overview

Block ciphers cause min 16x slowdown. We need to optimize.

• Divide and conquer: 6x speed-up

• Request soup: 16x speed-up

• Browser parallelization: 6x speed-up

Total ~ 500x speed-up!

Binary search in alphabet space

Request soup

Problem:

• Need 16x samples for block ciphers

• But we only need the length mean

Solution:

• Responses come pipelined, can’t tell them apart

• We don’t care! Measure total length

• Divide by amount, extract mean

Browser parallelization

• Do 6x parallel requests; browsers support it

• Each parallel request cannot adapt based on previous

• But we need many samples of same candidates anyway

• No need to adapt before we collect enough

Statistically expected* runtime

• Request soup + browser parallelization:

• 16 requests in 1.5 sec (in good network)

• Assuming limited noise:

• Using sequential technique: 3 min / byte

• 3 batches per candidate

• Using divide & conquer: 36 sec / byte

* Additional batches may be needed if confidence is low

Rupture

A framework to break HTTPS

• Open source: MIT licensed

• Source code: https://github.com/dionyziz/rupture

• Website: https://ruptureit.com/

• Team:
• Dionysis Zindros

• Eva Sarafianou

• Dimitris Karakostas

https://github.com/dionyziz/rupture
https://ruptureit.com/

Rupture

• General web attack framework

• Can be adapted to work for CRIME, POODLE, …

• Persistent command & control channel

• Extensible

• Modular analysis / optimizations / strategies

• Experiment with your own

• Scalable architecture: Multiple attacks simultaneously

[evil js] Execute work

[evil js] Execute work

Inject evil js in HTTP

[evil js] Execute work

Inject evil js in HTTP

Give/Report work

[evil js] Execute work

Inject evil js in HTTP

Give/Report work

Control
Analyze
Command

[evil js] Execute work

Inject evil js in HTTP

Give/Report work

Capture/Report
victim traffic

Control
Analyze
Command

[evil js] Execute work

Inject evil js in HTTP

Give/Report work

Capture/Report
victim traffic

Control
Analyze
Command

Persistent
storage

Robust, persistent command & control

• Automatically inject JS to HTTP

• All plaintext connections infected

• One tab at a time gets work from C&C server

• User closes tab? Different tab starts attacking

• User switches browsers? Works on different browser

• Data collection failed for a sample? Sample recollected

• User reboots computer? Attack continues

• Persistent storage → Future analysis with new techniques

Rupture demo

Mitigation

First-party cookies

• Don’t send auth cookies cross-origin

• Backwards compatibility: Web server opts-in

• Mike West implemented it in Chrome 51

• Coming April 8th

Set-Cookie: SID=31d4d96e407aad42; First-Party

Future work

• Responsible disclosure:

• Publish specific preconfigured Rupture targets – Gmail, Facebook, etc.

• In coordination with web app developers

• Implement First-Party cookies in Firefox and other browsers

• Extend Rupture with other attacks: CRIME, etc.

• Implement SPDY support for Rupture

• Backtracking

• Come help us make Rupture better – many bugs on GitHub

Key takeaways

1. HTTPS + gzip = broken

2. Rupture framework is live – attacks are easy

3. Enable first-party cookies on your web app

Thank you! Questions?

https://dimkarakostas.com
DF46 7AFF 3398 BB31 CEA7 1E77 F896 1969 A339 D2E9

