OWARASP 2021

>irtual
. APPSEC

PRESENTED BY:
Erik Elbieh, Security Consultant & Researcher
Palindrome Technologies

We’re not in HTTP anymore:

A — ors Alo IVer () A

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>irtus Server Security }
» APPSEC

Talk Summary

1. How WebSockets Work
2. Summary of WebSockets Research

3. New STEWS tool(s)

>I|'1!Ll Eé] Server Security
« APES

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

Erik Elbieh’s Brief Bio

e Security Researcher and Consultant at Palindrome Technologies
o Pen testing telecom systems, web apps, Kubernetes, and more
e Previously a Security Engineer at General Motors
o Secured vehicle modules, Bluetooth specialist
e OSCP certified since 2019
e Graduated from Columbia University and Bard College at Simon’s Rock
e More at erikelbieh.com

https://www.palindrometech.com/
https://erikelbieh.com

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

SiltLE Server Security }
~» APPSEC

Part 1: How WebSockets Work

OU{HSD 2021 We’re not in HTTP anymore: Investigating WebSocket
a >irtus Server Security

~» APPSEC

WebSocket Protocol History

e Created in 2010-2011 (RFC6455)
e Provides a low-overhead web protocol for real-time communications

e \WebSocket servers are often distinct from HTTP servers

O>LU|9_?I:D 2021 We’re not in HTTP anymore: Investigating WebSocket
it

Server Security
. APPSEC

WebSocket vs. HTTP

%

Source: https://developerinsider.co/difference-between-http-and-http-2-0-websocket/

>||'1:LIEH Server Security
« APES

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

WebSocket vs. HTTP

e \WebSockets don’t use the request/response approach that HTTP
does. WebSockets remain open until closed. This allows webpage
updates to happen without refreshing the webpage (alternative to
XHR, etc.)

o Note: Proxies are usually built for the request/response
approach HTTP uses and can have WebSockets vulnerabilities

e HTTP has headers (AKA overhead) with every request/response,
but after a WebSocket is started, there is no similar header. Lower
overhead is good for frequent back-and-forth real time
communication.

Server Security

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>irtua

L APPS

WebSocket Stack WebSocket Frame

0 1 2 3
AnyProtocol 9123456789080 12345067890123456789601

F|R|R|R| opcode|M| Payload len | Extended payload length

(socket-io, engine-io, STOMP, I|s|s|s| (4) |A] (7) I (16/64)
N|VIV|V| S| | (if payload len==126/127)
WAMP, MQTT, etc.) |1]12]3] |

o SRR L T +
Extended payload length continued, if payload len == 127
WebSocket e ’ i

I= |Masking-key, if MASK set to 1
(N INIJNN— \ @ § k.

Masking-key (continued) | Payload Data

TCP/IP G e

Payload Data continued ...

Payload Data continued ...

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>||'1:LIE:W Server Security C‘
w APRGSER

WebSockets Higher-Level Protocols

e Some protocols are (or can be) implemented on top of WebSockets:
o Socket.io

Engine.io

STOMP

WAMP

MQTT

O O O O

> | r t Lid I Server Security
APESER

@ OWARSP 2021 We’re not in HTTP anymore: Investigating WebSocket

WebSocket Example: Phase 1

Key Point: WebSockets use HTTP to “kickstart” the WebSocket protocol

Step 2: HTTP response from server
Step 1: HTTP request from browser

“101 Switching Protocols” is a ‘rare’ HTTP status
(Note the many uses of the word “WebSocket”) code that often indicates a WebSocket was started

GET / HTTP/1.1

Host: 127.0.0.1:8085
User-Agent: curl/7.74.0
Accept: */*

HTTP/1.1 101 Switching Protocols

Upgrade: websocket

Connection: Upgrade

Sec-WebSocket-Accept: GLWt4W80gwo61lmX9ZGa314RMRrO=
X-Powered-By: Ratchet/0.4.3

vV VVVYV
AN N A A

Upgrade: websocket

Vv

Sec-WebSocket-Version: 13
Connection: upgrade

Vv

vV V

Server Security

~ APPSEC

WebSocket Example: Phase 2

Not much to see because the WebSocket
Protocol focuses on minimizing overhead.
Chat application example shown below

Look, matey, I know a dead parrot when I see one, and I'm looking at one right now.

No no he's not dead, he's, he's restin'! Remarkable bird, the Norwegian Blue, idn'it, ay? Beautiful plumage!
The plumage don't enter into it. It's stone dead.

Nononono, no, no! 'E's resting!

>
<
>
<

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket
F) >irtual |

11

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>I|'1:Ll = Server Security
/, APPSEC

WebSockets in the Wild

Use cases include:

Chat bots, especially customer service
Slack, Discord, and other chat platforms
Maps tracking real-time movement

Live finance data websites
Cryptocurrency websites

Smart TV remote control!?
Kubernetes/Docker API!?

12

@ OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>||'1: a_‘ Server Security

Try This at Home Kids!

Tryitatafriend's

Don't try this at house!

13

>||'1:UE Server Security
« APES

@ OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

Try This at Home Kids!

1. Open web browser developer tools (Control+Shift+l in
Firefox or Chrome) and visit the Network tab

Click “WS” to filter for only WebSockets traffic

Visit a webpage with WebSockets, such as:

a. Finance: htips://finance.yahoo.com/

b. Sports: hitps://www.livescore.in/
c. Chat: https://support.zoom.us

d. Live maps: hitps://www.marinetraffic.com
4. Observe initial WebSocket request and response
Note: Web proxy tools like Burp Suite and OWASP ZAP
store WebSocket traffic in a separate tab from HT TP traffic y

W

https://finance.yahoo.com/
https://www.livescore.in/
https://support.zoom.us/
https://www.marinetraffic.com/

We’re not in HTTP anymore: Investigating WebSocket

Server Security

Finding WebSockets

C O B https//www palindrometech.com w @ I d’ d’ ®

F i refox @ ?:g:\?\g’[gg’};g About Research Services Careers News Resources Contact Q

O O Inspector Console [Debugger T Network {} Style Editor () Performance L Memory [E) Storage Tr Accessibility 888 Apg

B Y Filter UF I Q e Al HTML CSS JS XHR For Images Media WS Other | Jisable Cach
Status Method Domain File Initiator Type - Size [+ 1]

Burp Project Intruder Repeater Window Help Backslash Power
Burp SUlte Dashboard Target Proxy Intruder Repeater Sequencer

Intercept HTTP history WebSockets history Options

Filter: Showing all items

15

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

DiltUE Server Security }
~ APPSEC

Part 2: Summary of WebSockets Research

16

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

>I|'1:Ll I:’J] Server Security
« APES

Highlights of Prior WebSockets Security Research

e 2011: Firefox 4 temporarily removes WebSocket support due
to protocol issue

e 2016: SOP, a HTTP CSRF mitigation, doesn’t apply to
WebSockets -> Cross Site WebSocket Hijacking (CSWSH)

e 2019: Proxies that don’t properly handle WebSockets can lead
to WebSocket Smuggling

17

We’re not in HTTP anymore: Investigating WebSocket

Server Security C‘

Port Scanning with WebSockets

eBay is port scanning your system when
you load the webpage

by Martin Brinkmann on May 25, 2020 in Internet - Last Update: May 25, 2020 - 99 comments

eBay is port scanning users' PCs

By Anthony Spadafora (Pro) May 26, 2020

Windows PCs are scanned for remote support and remote access
applications when visiting eBay's website

eBay port scans visitors' computers for remote access programs

By Lawrence Abrams May 24, 2020 02:20 PM 12

Port Scanning and WebSockets

Related slide deck:
https://datatracker.ietf.org/meet
ing/96/materials/slides-96-saag- e "

1 NSA Information Assurance
- tmgall4@empire.eclipse.ncsc.mil

https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1
https://datatracker.ietf.org/meeting/96/materials/slides-96-saag-1

We’re not in HTTP anymore: Investigating WebSocket

Server Security }

Timeline of Prior Related Research

WSis New Black Hat Cross-site WebSocket Egoroy Semi-related |
born Paper Talk HljaCklng b|Og post Talk h2 Smuggling This talk
2010 2011 2012 2016 2019 2021

19

>I|'1:Ll = Server Security
/, APPSEC

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

Takeaways from Past Research

e Large scale security testing of WebSockets “in the wild” hasn’t
been publicly done before

e Research has been focused on the protocol level and proxy
(mis)handling - but what about the server implementations?

e HTTP gets all the attention

20

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

»

I|' Server Security }
ARROEE

HTTP Servers Market share

Web server developers: Market share of active sites

< I—iETC K_AFT —— Apache

—— Microsoft

80%

— Sun
60% :
—rginx
—— (Google
40% ~——— Cloudflare
~——— Other

—— LiteSpeed

20% .“ —— OpenResty
” -._

N IR i

f‘!":*
QQQ 00’\ OQ'L 790'5 QQ(O 0Q6 '_LOQ'\ r)pg‘b 009 O\Q "),0\?’ 0\'5 Q'\b‘ 0\6 0\6 0\'\ ’LQ\Q rLQrLQ ,-LQ'L'\
W 9 o 00% ¢e® T pot Tyt o 0% "o "¢e® T pet Ty P 0% e "¢ " pe* W

21
Source: https://news.netcraft.com/archives/2021/10/15/october-2021-web-server-survey.html

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>I|'1!LIE: Server Security
w APRGSER

WebSocket Servers Market share
SECURITY

BY OBSCURITY

22

We’re not in HTTP anymore: Investigating WebSocket

Server Security

Common WebSocket Server Implementations

Name Language Repository GitHub
Stars (as of
Nov 2021)
WS JS https://github.com/websockets/ws 17,200
Gorilla Go https://github.com/gorilla/websocket 15,700
uWebSockets C++ https://github.com/uNetworking/uWebSockets 13,300
Java-WebSocket Java https://github.com/TooTallNate/Java-WebSocket 8,500
Cowboy Erlang https://github.com/ninenines/cowboy 6,500
Ratchet PHP https://github.com/ratchetphp/Ratchet 5,600
warp Rust https://github.com/seanmonstar/warp 5,500
WebSocket++ C++ https://github.com/zaphoyd/websocketpp 5,100
websocket-sharp C# https://github.com/sta/websocket-sharp 4,400
WS Go https://github.com/gobwas/ws 4,200
websockets Python https://github.com/aaugustin/websockets 3,700
libwebsockets & https://github.com/warmcat/libwebsockets 3,200

23

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

SiltLE Server Security }
~» APPSEC

Part 3: New STEWS tool(s)

24

OWASP2021

u _ We’re not in HTTP anymore: Investigating WebSocket
F) >irtua

Server Security
~ APPSEC

Who doesn'’t like free stuff?

Released today, fresh out of the oven!

1. STEWS repository: https://github.com/PalindromelLabs/STEWS

a. Includes whitepaper and this slide deck
2. WebSockets Playground:

https://qgithub.com/Palindromel abs/\WebSocket-Playground
3. WebSockets Security Awesome:

https://aithub.com/Palindromel abs/awesome-websockets-security

25

https://github.com/PalindromeLabs/STEWS
https://github.com/PalindromeLabs/WebSocket-Playground
https://github.com/PalindromeLabs/awesome-websockets-security

OU{HSD 20 1 We’re not in HTTP anymore: Investigating WebSocket
>irtus

Server Security C‘
- AREOER

Top Tools Lack WebSocket Custom Test Support

—

. nmap: https://seclists.org/nmap-dev/2015/q1/134
2. Burp Suite (supports WebSockets, but not for extensions):

https://forum.portswigger.net/thread/websockets-api-support-c8e1
660b9f0ab

3. nuclei: https://github.com/projectdiscovery/nuclei/issues/539

26

https://seclists.org/nmap-dev/2015/q1/134
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://forum.portswigger.net/thread/websockets-api-support-c8e1660b9f0ab
https://github.com/projectdiscovery/nuclei/issues/539

OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket
Server Security

>irtus

~ APPSEC

STEWS

STEWS = Security Testing and Enumeration of WebSockets

Performs 3 key steps in WebSockets security testing:
1. Discovery

2. Fingerprinting

3. Vulnerability Detection

>

27

>||'1:Llal Server Security
« APES

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

1. WebSockets Discovery

Why WebSocket endpoint discovery is difficult:

1. WebSockets use HTTP to start a connection, but observing HTTP
alone does not indicate a WebSocket

2. Websites often start WebSockets using JavaScript, so WebSocket
endpoints aren’t always found parsing HTML
a. Sometimes the main website is not linked to the WebSocket

because the WebSocket endpoint is a standalone API

3. WebSockets may only exist at one specific URL path and at one

specific port of the endpoint

28

>||'1:Llal Server Security
« APES

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

1. WebSockets Discovery

Approaches to discovering WebSockets:
1. Finding WebSockets on a specific website
a. Spider website HTML and search for WebSocket keywords
in source code (downsides: false positives)
b. Spider website and load all JavaScript and watch for HTTP
101 responses (downsides: loading all JS is slow)
2. Finding WebSockets on any website
a. Use wordlist of common WebSocket endpoints and brute
force a large list of websites (downsides: only testing wordlist
endpoints)

29

>||'1:Llaf Server Security
« APES

@ OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

1. WebSockets Discovery

Approaches to discovering WebSockets:
1. Finding WebSockets on a specific website
a. Spider website HTML and search for WebSocket keywords
in source code (downsides: false positives)
b. Spider website and load all JavaScript and watch for HTTP
101 responses (downsides: loading all JS is slow)
2. Finding WebSockets on any website
a. Use wordlist of common WebSocket endpoints and brute
force a large list of websites (downsides: only testing wordlist
endpoints)

Good for finding many WebSocket endpoints quickly
30

We’re not in HTTP anymore: Investigating WebSocket

OUJARSP 2
a il t L| E] f Server Security

L APPS

1. WebSockets Discovery

Difficulties in scalable WebSocket endpoint discovery:
1. Tools like masscan and zmap are fast at endpoint detection
a. ...However, they work at the TCP/IP layer and we need to operate at
the HTTP/WebSocket layer
2. Burp Suite’s Turbo Intruder is fast at the HTTP layer
a. ...However, Turbo Intruder documentation states “it's designed for
sending lots of requests to a single host”, not testing many hosts

3. ZGrabZ2 is a fast application-layer scanner
a. ...However, requires some tweaks to support WebSocket requests

31

https://github.com/robertdavidgraham/masscan
https://github.com/zmap/zmap
https://github.com/PortSwigger/turbo-intruder
https://github.com/zmap/zgrab2

We’re not in HTTP anymore: Investigating WebSocket

OWASP 2021
a >|rtUEJ Server Security
~ APPSEC

1. WebSockets Discovery

Acquiring large lists of URLs

1. Googling “Top million URLSs":
https://www.letmegooglethat.com/?g=top+million+urls

2. Zone Files: https://czds.icann.org/home
a. Zone Files are what DNS servers use for lookups
b. Downside is that many URLs in zone file aren’t active

32

https://www.letmegooglethat.com/?q=top+million+urls
https://czds.icann.org/home

>||'1:Llaf Server Security
« APES

@ OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

1. WebSockets Discovery

Other difficulties:
e Large number of DNS lookups can be a bottleneck
o Many DNS servers have rate limit
o Using multiple DNS servers can help solution
o zgrab2 allows DNS lookup beforehand (using zdns, massdns, etc.)
e Obtaining wordlist of probable WebSocket paths to brute force requires
manual effort
o Found known WebSocket endpoints through random browsing, bug
bounty reports, reading GitHub WebSocket repository issues

33

We’re not in HTTP anymore: Investigating WebSocket

Server Security

1. WebSockets Discovery

From ~3 million domains

URL Number of WebSocket servers found
domain.com 2281

domain.com/ws 1991

domain.com/ws/v1 1605

domain.com/ws/v2 1606
domain.com/socket.io/?EIO=3&transport=websocket | 1389

domain.com/stream 448

domain.com/feed 452

www.domain.com 1582

ws.domain.com 891

stream.domain.com 574

Total 12819 y

OWASP 2021 We’re not in HTTP anymore: Investigat

>Ir1:IJE| Server Security
APPSEC

STEWS Discovery Demo

" ’ ,

35

http://www.youtube.com/watch?v=COKcLGEsKmE

>|rtUEJ Server Security
~ APPSEC

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

2. WebSockets Fingerprinting

The challenge: to find implementation-level differences between
WebSocket server implementations in order to identify them

“In theory there is no difference between theory and practice — in
practice there is”

36

OU{HSD 2021 We’re not in HTTP anymore: Investigating WebSocket
a >irtus Server Security

L APPSEC

2. WebSockets Fingerprinting

A few of the most popular WebSocket servers include:
e uWebSockets (C++)

e Gorilla (Go)

e ws (JavaScript)

e websockets (Python)

e Spring Boot (Java)

But there’s dozens of WebSocket server implementations

37

We’re not in HTTP anymore: Investigating WebSocket

OUJARSP 2
a >I|'1:Ll:4] Server Security
« APES

2. WebSockets Fingerprinting

Differences from other fingerprinting tools:
e HTTP fingerprinters only handle 1 protocol, whereas WebSockets

use HTTP to negotiate the switch to WebSockets, meaning
STEWS fingerprinting handles 2 protocols

e Tools like nmap query specific URL paths to gain information, but
WebSocket servers usually only listen at a specific URL path

38

>I|'1!Ll Eé] Server Security
« APES

a OWASP 2 We’re not in HTTP anymore: Investigating WebSocket

2. WebSockets Fingerprinting

To find WebSocket server identifying features, use a simple
deterministic fuzzer to test different features of the
WebSocket Server, such as:

e Supported WebSocket Protocol Version Numbers

e Reserved and opcode bit support

e \erbose error messages

e Default maximum data length

39

OWASP?2

>||'1:Llaf

APPS

We’re not in HTTP anymore: Investigating WebSocket
Server Security

2. WebSockets Fingerprinting

Over 50 different STEWS fingerprinting test cases:

100-series tests:
200-series tests:
300-series tests:
400-series tests:
500-series tests:
600-series tests:
700-series tests:

opcode tests (WebSocket protocol)

rsv bit tests (WebSocket protocol)

version tests (HTTP protocol)

extensions tests (HTTP protocol)
subprotocol tests (HTTP protocol)

long payload tests (WebSocket protocol)
hybi and similar tests (WebSocket protocol)

40

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

>I|'1:Ll =] Server Security

2. WebSockets Fingerprinting

WebSocket Server Implementation | STEWS-fingerprint.py Test Case 200 Response

npm ws No error message

faye One or more reserved bits are on: reservedl =0, reserved2 =0,
reserved3 =1

Gorilla unexpected reserved bits 0x10

uWebSockets No error message

Java Spring Boot The client frame set the reserved bits to [1] for a message with opCode
[2] which was not supported by this endpoint

Python websockets No error message

Ratchet Ratchet detected an invalid reserve code

Tornado No error message

41

OWASP 2021 We’re not in HTTP anymore: Investigating

>Ir'|:IJE| Server Security
APRSEG

STEWS Fingerprint Local Server Demo

42

http://www.youtube.com/watch?v=G0PPPInswIA

OWASP 2021

>irtual

APPSEC

STEWS Fingerprint Public Server Demo

We’re not in HTTP anymore: Investigating
Server Security

43

http://www.youtube.com/watch?v=q1Qy1v09K_c

OWASP

3. WebSockets Vulnerability Detection

WebSocket servers have
a few CVEs...

A longer list of WebSocket
server CVEs found in
WebSocket Security
Awesome

We’re not in HTTP anymore: Investigating WebSocket
Server Security

CVEID Vulnerable package Related Vulnerability summary

writeup
CVE-2021- Tomcat Apache DoS memory leak
42340 mailing list
CVE-2020- uWebSockets Google 0SS- Stack buffer overflow
36406 Fuzz
CVE-2021- Python websockets HTTP basic auth timing attack
33880
CVE-2021- ws GitHub Regex backtracking Denial of Service
32640 Advisory
CVE-2020- socket.io-file Auxilium File type restriction bypass
24807 Security
CVE-2020- socket.io-file Auxilium Path traversal
15779 Security
CVE-2020- Gorilla Auxilium Integer overflow
27813 Security
CVE-2020- Java WebSocket GitHub SSL hostname validation not performed
11050 advisory
CVE-2020- faye-websocket GitHub Lack of TLS certificate validation
15134 advisory
CVE-2020- faye-websocket GitHub Lack of TLS certificate validation
15133 advisory
CVE-2020- Ruby websocket-extensions Writeup Regex backtracking Denial of Service
7663
CVE-2020- npm websocket-extensions Writeup Regex backtracking Denial of Service
7662
CVE-2018- Python websockets DoS via memory exhaustion when
1000518 decompressing compressed data
CVE-2018- Qt WebSockets Bug report Denial of service due large limit on
21035 message and frame size
CVE-2017- socket.io GitHub Issue | Socket IDs use predictable random
16031 numbers
CVE-2016- uWebSockets npm advisory | Denial of service due to large limit on
10544 message size
CVE-2016- NodelS ws npm advisory | Denial of service due to large limit on
10542 message size

>

44

https://github.com/PalindromeLabs/awesome-websockets-security
https://github.com/PalindromeLabs/awesome-websockets-security

We’re not in HTTP anymore: Investigating WebSocket

OUJARSP 2
a il t L| E] f Server Security

L APPS

3. WebSockets Vulnerability Detection

e Ideally the detection process of a CVE does not
involve exploiting it, but often there is no other way
e STEWS vuln-detect includes checks for a few CVEs,
though more should be added in the future:
o CVE-2020-27813 (Gorilla DoS Integer Overflow)
o CVE-2020-7662 & CVE-2020-7663 (faye
Sec-WebSocket-Extensions Regex DoS)
o CVE-2021-32640 (ws Sec-Websocket-Protocol
Regex DoS)

45

>IrtIJE| Server Security
APPSEC

@ OWARSP 2021 We’re not in HTTP anymore: Investigati

STEWS Vuln Detect Demo

http://www.youtube.com/watch?v=DXQQJKMpMRk

>I|'1:Ll = Server Security
/, APPSEC

a OWASP 2021 We’re not in HTTP anymore: Investigating WebSocket

Summary

Part 1: WebSockets work like HTTP, but less examined

Part 2: Minimal research done around WebSocket
security and popular tools lack support

Part 3: STEWS toolset provides off-the-shelf tooling for
discovery, fingerprinting, and vulnerability detection of
WebSocket servers

47

We’re not in HTTP anymore: Investigating WebSocket

OUJARSP 2
a >I|’1!Ll:ﬂ Server Security
« APES

|deas for Future Research

. Security of WebSockets subprotocols

Security of WebSocket Compression (RFC 7692)
Fast JavaScript-based spidering to discover
WebSocket endpoints on single domain

4. Can other HTTP-type attacks be ported to
WebSocket servers?

WM =

Over a dozen additional ideas listed in whitepaper

48

We’re not in HTTP anymore: Investigating WebSocket

OWASP2021
a >|rtUEJ Server Security

~» APPSEC

Recommended Additional Resources

PortSwigger WebSocket mini-CTF exercises:
https://portswigger.net/web-security/websockets

Mikhail Egorov’s 2019 conference talk:
https://www.youtube.com/watch?v=gANzRo/7UH138

WebSocket Protocol RFC, RFC 6455:
https://datatracker.ietf.org/doc/html/rfc6455

WebSocket Protocol Compression RFC, RFC 7692:
https://datatracker.ietf.ora/doc/html/rfc7692 49

https://portswigger.net/web-security/websockets
https://portswigger.net/web-security/websockets
https://www.youtube.com/watch?v=gANzRo7UHt8
https://www.youtube.com/watch?v=gANzRo7UHt8
https://datatracker.ietf.org/doc/html/rfc6455
https://datatracker.ietf.org/doc/html/rfc7692

D>w|9_?tp 2021 We’re not in HTTP anymore: Investigating WebSocket
Il TLE

Server Security }
« APPSEE

Thank You!

Questions?

Email: erik.elbieh@palindrometech.com
Site: https://erikelbieh.com

50

mailto:erik.elbieh@palindrometech.com
https://erikelbieh.com

OWASP 2072 T

irtual

