
 

 

Toast Notifications 
Alright ToastNotifications, why do we want to use them within Forensics or Incident Response? What 
is the forensic value of these notifications? Before we jump into answering these questions, let's take 
a brief look at what ToastNotifications actually are. Microsoft states the following: 
The notification area is a portion of the taskbar that provides a temporary source for notifications and 
status. It can also be used to display icons for system and program features that have no presence on 
the desktop, such as battery level, volume control, and network status. The notification area has been 
known historically as the system tray or status area. (https://docs.microsoft.com/en-
us/windows/win32/shell/notification-area) 
  
Are notifications new? No, prior to Windows 10 notifications handled by the Windows operating 
system were displayed in the Action Center. With the introduction of Windows 10 this was changed 
to Notification Center. The notifications and alerts generated by the Windows operation system are 
so called toast notifications. A toast notifications is basically a pop-up on the users’ screen, which will 
be active for several seconds on screen (depending on the preferences of the application). These 
toast notifications can be initialized by native Windows applications such as email, updates but also 
by third-party applications.  
After the notifications are displayed on the desktop of the user, the notifications will be grouped 
inside the Notification Center up until they are 'cleaned up' by the user.  A user can decide to turn off 
notifications of programs or entire notification system.  
  

Forensic relevance and value 
As explained above, both Windows native as well as third-party applications can generate toast 
notifications to notify the end user. This means, from a forensics perspective it could provide to be a 
source of evidence that potentially sketches activity of all system wide applications. This means that 
a Forensic examiner can determine how the system is used, what applications were running at both 
the moment of capture as well as in the past, and finally what interesting activity was so important 
the user had to be notified.  Especially in case of the latter, this is key evidence for a forensic 
examiner during an investigation. Let us give you some examples: 
 Connected devices 
 Receiving application or system critical alerts 
 Receiving alerts of Antivirus solutions 
 Receiving alerts of messages such as WhatsApp or even e-mail 

  
However, when taking connecting devices as an example, one could argue we have the Windows 
registry to determine that? Alerts of the AV solution, it could be stated we have Windows event logs 
for that? True, but aren't we always looking for more artifacts to substantiate other artefacts? Also, 
these artefacts are well known by adversaries. Therefore, in the case of anti-forensics there is a good 
chance they might not think about ToastNotifications (up until now, after the release of this write-up 
;)). We are convinced that these ToastNotifications can be of great forensic value since they allow an 
investigator to validate evidence. 
  
Besides volatile artefacts of toast notifications there are also traces on disk in the wpndatabase.db 
sqlitedatabase, which is also retrievable from memory.  The distinctions of our ToastPlugin is the fact 
that we scrape the ToastNotifications structure directly out of memory instead of finding a database 
file and parsing the content.  We find it more likely that an adversary could have tampered with the 
SQLite database instead of the actual ToastNotifications structure found in memory. In addition, both 
artifacts could be a good combination and  differences can be easily spotted.  

  
  

https://docs.microsoft.com/en-us/windows/win32/shell/notification-area
https://docs.microsoft.com/en-us/windows/win32/shell/notification-area


 

 

Technical Details 
To pop a toast notification a program needs to send the toast data via window messages to the 
window with the name `ShellTrayWHD`. This window is part of the explorer process that further 
handles the requests of toast notifications. The explorer process will check what type of data is 
embedded in the notification and chooses an xml template accordingly. This template is populated 
with the following function `UpdateToastTemplateWithData`. Following this, the toast notification is 
dispatched and shown to the user. 
  
  

 
  

  
Looking at the structure of the ToastNotifications in memory, we found out that the XML structure is 
easily recognized. The image you will find below is an example of the XML structure observed in 
memory during the research. 
  

 
  



 

 

The XML structure contains all the information that's needed to visualize its contents. Information 
such as title and content are provided, also the location of files such as pictures or sound are 
embedded within this structure. 
More info and details about the toast notification XML tags can be found on the Microsoft website:  
https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/toast-schema 
Unfortunately information such as the time of creation and duration of the notification are not 
present in this structure. In order to retrieve this, further research is needed on the explorer process. 
  

ToastPlugin 
The toastplugin uses a regular expression and utilizes the yarascan plugin 
(https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#yarascan) to find 
toast XML structures in memory. When YARA finds a hit the plugin parses the XML structure and 
displays it on the command line. 
Running the volatility yaraplugin with the regex: /<toast.*\/toast>/ we find hits on the Start tags 
found in memory. We can utilize the yarascanplugin or the volshell plugin to jump to this address and 
analyze the content of the different tags. 
Below you can find an illustration depicting a hit of a received email found by the yarascanplugin 
with our regex. We've highlighted some parts, where green highlights one of the unique tags to 
indicate the start of the ToastNotifications. In red and blue interesting forensic values of the 
ToastNotification are highlighted, in which case red highlights the actual content of the 
ToastNotificaton whereas blue highlights the indicators of the application and corresponding 
artifacts. 
  

 
Figure 3: ToastNotfiicatoinXML structure in memory 
  
What does this look like running the actual plugin? Below you will find example output of the plugin, 
which successfully found four ToastNotifiactions in memory. Of the aforementioned 
ToastNotifications three are initialized by outlook and 1 by a custom powershell script used for 
testing.   
  

https://docs.microsoft.com/en-us/windows/uwp/design/shell/tiles-and-notifications/toast-schema
https://github.com/volatilityfoundation/volatility/wiki/Command-Reference-Mal#yarascan


 

 

 
  

  
Future work  
We call this the first stage of the plugin, we have done a lot of research already but not extensive 
enough to translate it into the plugin. We have drawn a road map and divided our development of 
the plugin into several stages: 

1. Base plugin for Volatility Contest submission 
2. Optimize and enrich parsing of output, to display on the CLI 
3. Adding more metadata, like ArrivalTimestamp, ExpireTimestamp and application information 
4. Combine evidence with the content of the wpndatabase.db found in memory to create a cross 

view. 
  
  
Authors = Max de Bruijn , Rolf Govers 
Department = Forensics and Incident Response 
Company = Fox-IT B.V. 
Year = 2019 
 


