

Cesare Pizzi (Sorint.lab)

Volatility Plugin: powersh

Summary
In the last months/years, the number of Malwares/Miners/Malicious software using Powershell as a

First/Second stage or for the real payload is increased and it became quite common. In addition to this,

we saw different “fileless” malwares in the wild, which make very interesting the usage of memory

forensic for analysis:

https://www.theregister.co.uk/2019/02/26/malware_ibm_powershell/

https://thehackernews.com/2019/09/its-been-summer-of-ransomware-hold-

ups.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheHackersNews

+%28The+Hackers+News+-+Cyber+Security+Blog%29

Considering this, I thought that the time for a dedicated plugin for investigating Powershell based

infections has come.

https://www.theregister.co.uk/2019/02/26/malware_ibm_powershell/
https://thehackernews.com/2019/09/its-been-summer-of-ransomware-hold-ups.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheHackersNews+%28The+Hackers+News+-+Cyber+Security+Blog%29
https://thehackernews.com/2019/09/its-been-summer-of-ransomware-hold-ups.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheHackersNews+%28The+Hackers+News+-+Cyber+Security+Blog%29
https://thehackernews.com/2019/09/its-been-summer-of-ransomware-hold-ups.html?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheHackersNews+%28The+Hackers+News+-+Cyber+Security+Blog%29

2

Basic Functionalities
The plugin is able to scan the image for processes by using both “psscan” or “pslist” classes and search

for Powershell processes.

The search is not based on the process name, but by using a specific built-in YARA rule, inspecting the

mapped memory for some specific artefacts. One of the issue was to find out something common for

all the versions of Powerhell (across different executable versions and different OS architectures). The

following rule looks to be able to do this for 32-64bit different Powershell versions looking in “.rdata”

and “.rsrc” sections:

Once identified, the process is reported with the command line extracted as follow:

The process of using this method for identifying the running processes allow to avoid some evasion

technique (i.e. process or executable renaming) as done by some known malware:

https://isc.sans.edu/diary/Maldoc+Duplicating+PowerShell+Prior+to+Use/24254

https://myonlinesecurity.co.uk/fake-scanned-from-a-xerox-multifunction-printer-delivers-trickbot/

https://isc.sans.edu/diary/Maldoc+Duplicating+PowerShell+Prior+to+Use/24254
https://myonlinesecurity.co.uk/fake-scanned-from-a-xerox-multifunction-printer-delivers-trickbot/

3

Printable sequence
char > 60

Shannon Entropy
> 3.0

Optional/Advanced Functionalities
Malicious Powershell scripts are usually built with a lot of additional and may be heavily obfuscated

content. This is usually the real “payload” of the script itself, and being able to quickly identify It can

speed up the analysis activity.

In order to catch this specific content, an optional “Inspect” capability has been added to the plugin.

When this option is enabled, the VAD pages associated with the process are checked for some specific

criteria:

If the criteria is matched, the region is dumped to disk for further inspection. This check can reduce

the number of dumped sections by half or more (tweaking the parameters through the command

line), reducing both process and analysis time (in this example with char sequence > 30):

The entropy has been added to get rid of the sequence of chars where we have no variance (quite

common in RAM), by keeping the ones with high indexes that could indicate obfuscated code.

Command Line options
Beside the options derived from the other volatility classes, we have the following command line

options implemented in the plugin:

-S, --scan Use PSScan instead of PSList

-I, --inspect-vad Inspect VAD for interesting powershell data

-E 3.0, --entropy=3.0 Min Shannon Entropy used to identify meaningful

 strings

-P 60, --printable=60 Min sequence of printable chars to consider it as

 meaningful strings

-D DUMP_DIR, --dump-dir=DUMP_DIR Directory in which to dump interesting VAD files

-M 1073741824, --max-size=1073741824

 Set the maximum size (default is 1GB)

-p PID, --pid=PID Operate on these Process IDs (comma-separated)

-u, --unsafe Bypasses certain sanity checks when creating image

-m, --memory Carve as a memory sample rather than exe/disk

-x, --fix Modify the image base of the dump to the in-memory

 base address

The bolded ones are the options added for the specific plugin, where you can enable inspection,

specify the entropy limit and a dump folder.

4

Real Case Scenario: Wannamine
This case is based on a real miner found in the wild, dubbed (in some of its variants) as Wannamine.

This is a quite complex set of Powershell scripts leveraging WMI calls, to perform a completely fileless

attack. The script has several built in capabilities that we will discover by using the “powersh” plugin.

After the memory acquisition, the first command run is:

The plugin identifies one running Powershell process, with its command lines. As we can verify from

command line the script access WMI Classes. This specific infection is completely “fileless” and stores

the needed code in RAM and WMI database. That is why it is especially suitable for the Volatilty live

analysis.

“pstree” module show the following:

The process has a non-existing process (PID 4444) as parent. The persistence of this code is actually

obtained through an entry in the WMI database.

Now that we realized that we have this suspicious process (running WMI content as per the extracted

command line), we can try to inspect the mapped memory:

./vol.py --plugins=/root/dumpbin/volatility/plugins/powershell -f

/media/sf_temp/win10_wannamine_analysis.dmp --profile=Win10x64_17763

powersh

./vol.py --plugins=/root/dumpbin/volatility/plugins/powershell -f

/media/sf_temp/win10_wannamine_analysis.dmp --profile=Win10x64_17763

powersh -I -D /tmp

5

Result:

We can now start to browse the dumped pages (82 files, a lot less than the standard dump), looking

for interesting artefacts.

6

File “powershell.exe.65baa580.0x000001fb0cab0000-0x000001fb24aaffff.dmp”

After a quick search on Internet with some of these strings, we found that this is a known package

named “Invoke-NinjaCopy” (https://github.com/clymb3r/PowerShell/tree/master/Invoke-NinjaCopy)

which is part of “PowerSploit” package. This script in particular allow to access a filesystem bypassing

some known protections, like

 Files which are opened by another process

 SACL flag set on a file to alert when the file is opened

 Bypass DACL's, such as a DACL which only allows SYSTEM to open a file

https://github.com/clymb3r/PowerShell/tree/master/Invoke-NinjaCopy

7

File “powershell.exe.65baa580.0x000001fb0cab0000-0x000001fb24aaffff.dmp”

In the same file, we found also part of another script: “Invoke-WMIExec” (https://github.com/Kevin-

Robertson/Invoke-TheHash/): this script is part of a suite that allows to use the “pass-the-hash”

method to access resources. This tell us a lot about how the script is performing lateral movement.

Another interesting part is the following:

where we can see that “mimikatz” is used to steal/dump passwords from memory.

8

File “powershell.exe.65baa580.0x000001fb25100000-0x000001fb25239fff”

Another indicator of the functionalities of the software: XMRig (https://github.com/xmrig/xmrig) is a

well-known mining software.

Additional investigations
Knowing that a malicious powershell script is running on the system, other investigations can be

carried out by using the well-known Volatility plugins.

Looking for suspicious connections:

The highlighted line shows a unusual connection port. After a quick search on Virustotal, the IP seems

to belong to “nanopool.org” domain, which is linked to Monero mining. This confirm our checks.

./vol.py --plugins=/root/dumpbin/volatility/plugins/powershell -f

/media/sf_temp/win10_wannamine_analysis.dmp --profile=Win10x64_17763

netscan

https://github.com/xmrig/xmrig

9

Doing some search with Powershell strings, we can identify some additional entries in free and

allocated memory; even in this case we can use this information to going deeper into investigation

In this case, we can identify what we can consider to be a C&C controlling the script and giving

instructions (here it’s trying to download additional code to be executed).

Conclusion
The “powersh” plugin, offers help to speed up the Powershell based infections: the detection

capabilities together with the possibility to focus the analysis on the relevant dumped content can

help in save times on that. The possibility to run different levels of “inspections”, starting from the

simple “process” identification to the dump of memory, allows to proceed in layered analysis and also

to use it as a simple “check” to see if hidden Powershell scripts are running on the system.

./vol.py --plugins=/root/dumpbin/volatility/plugins/powershell -f

/media/sf_temp/win10_wannamine_analysis.dmp --profile=Win10x64_17763

strings -s /tmp/wanna_strings.txt

