
XPath Injection Attacks
Of the Awesome Advanced Automated Kind

Paul Haas

Kiwicon 7

Agenda

 Who, What, Why, How, Where, When

Who

 Paul ‘sss’ Haas

 Security Consultant @ Security-Assessment.com in Wellington

 Experience

 10 years in computer security, hailing from California, living in NZ

 Expertise across entire pentest spectrum: App, Net, WIFI, DB, etc.

 Talks: OWASP Day NZ 2013, sec. training classes, Defcon 2010

 Bash-Fu Master, XPath Ninja, CTF Winner, Psychic Beach bum

 Passions

 Solving complex problems (the hack)

 Alternately: making them more complex

 Mario Kart duals at sunset on the beach

What

 What is XPath?

 Like SQL but for XML Documents

 SQL: SELECT book FROM bookstore WHERE

title='Test'

 XPATH: /library/book/[title='Test']

 Uses File System Folder/Path syntax with slashes ‘/’

 Parent, Ancestor, Sibling, Descendants, nodes

 Based on standards we don’t really care about

 W3C: XQuery, XLink, XSLT

 Guaranteed universal implementation

What

<?xml version="1.0" encoding="ISO-8859-1"?>

<!-- Protect this document -->

<lib>

 <book>

 <title>Learning XPath</title>

 <description>And why you are doing it wrong</description>

 <price>10.99</price>

 <author>That Guy</author>

 <author>Someone Else</author>

 </book>

 <book>

 <title>Necronomicon</title>

 <description language="latin">!Q@#$%^*()_+{}:"?</description>

 <price><?cat /dev/random; ?></price>

 <author>"Mad Arab" Abdul Alhazred</author>

 </book>

 <book>

 <title>Les Fleurs du mal</title>

 <description>Spleen et Ide'al</description>

 <price>5</price>

 <author>Charles Baudelaire</author>

 </book>

</lib>

What

 Examples

 count(/lib/book)

 /lib/book[1]/price

 //book[last()]/description

 /lib/book[title='Learning XPath']

 Elements

 Node, @attribute, ‘//’ anywhere, ‘.’ Current, ‘..’ Parent, ‘*’ wildcard

 Functions

 name, count, string-length, translate, concat, contains, substring

 Operators

 +-/*, div, =, !=, <, <=, >, >=, [], or, and, mod, | as a union operator

Wut

 XPath 1 introduced in 1999

 Built-in and included with most XML frameworks/libraries

 All features should be present in any XPath implementation

 XPath 2 'Working Draft' introduced in 2007

 Introduces powerful functions useful for hacking

 Not common in wild or fully implemented in most libraries

 XPath 3 in candidate status as of January 2013

 No known implementations

Why

 Why XPath

 XPath allows queries to read from a ‘sensitive’ backend database

 Used in variety of web frameworks as a replacement for SQL

 Commonly used to provide dynamic user interaction/search

 Certain characters can modify purpose and function of query

 Modified query can access other part of database

 Including arbitrary XPath functions

 Risk

 XPath 1: Retrieve the entire database

 XPath 2: Access remote files on the server

 Why does this sound familiar

 What alarms are going off?

Why

 XPath Injection (XPi)

 Similar risk as SQL Injection

 Much less awareness

 Only a couple of tools

 Plenty of vulnerable frameworks

 Similar Injection Techniques

 If you know SQLi, you can do XPi

 Single ' and double " quotes escape strings

 Spaces escape numerical input

 Brackets [] used to escape XPath predicates

 Error, union, time-based, blind techniques

 Still works: x’ OR ‘1’=‘1

 Even better: x’ AND 1=0] | //*["1"="1

Why

 Penetration Testing

 Need to be aware of emerging technologies and vulnerabilities

 XML technologies on the rise, more ‘enterprise’

 Increased number of applications using XPath

 Lack of techniques, tools and cheat sheets

 Existing Work

 Various presentations and whitepapers about injection techniques

 XPath-blind-explorer: Windows binary to perform blind injection

 xcat.py: Blind XPath injection with focus on XPath 2 techniques

 Both tools designed by same author for Blackhat

Why

 xcat Advantages

 Reconstruct a remote XML database using blind XPi

 Replaces Windows binary with open source Python implementation

 Includes both XPath 1 and 2 techniques

 Uses threading and other optimization techniques

 xcat Disadvantages

 Best optimizations only work in XPath 2

 Version 1 falls back to slow linear methods

 Threading makes improvements impossible

 Cannot customize retrieval content

 Can do better

y?

 Better Faster Stronger

 Use xcat as a starting point

 Open source, allow future improvements

 Focus solely on XPath 1 injection techniques

 Use blind injection so method is universal

 Allow customisation of retrieval content

 Blind Injection

 Does not rely on XPath data being returned,

errors or speed of response

 Ask yes/no question about the database

 Distinguish if true/false using response

 Repeat until no questions remain

How

 XPath Injection : A Brief Primer

 Find your own vulnerable application

 Test all locations of dynamic input : GET, POST, HTTP

Headers, cookies, etc.

 Identify ‘SQL flaw’ using basic injection

 Discover complex SQL injection isn’t working

 Injection Comparisons

 ' OR '1'='1 – Supported in both SQLi and XPi

 ' OR user() AND '1'='1 – Works in SQLi only

 ' OR count(//*) AND '1'='1 – Works in XPi only

 ' OR lower-case('A') AND '1'='1 – Works in XPath 2

 ' OR kart() AND '1'='1 – Doesn’t work anywhere

How

 Demo

How

Reconstructing an XML database using XPath

 Starting at the root node (node=‘/*[1]'):

1. Print node name: name(node)

2. Print out each attribute name/value: count(node/@*)

3. Print out each comment: count(node/comments())

4. Print out each processing instruction: count(node/processing-

instruction())

5. Print out each text for: count(node/text())

6. Repeat this function recursively for each child: count(node/*)

 Tedious, hence the need to automate the attack

 Needs to be further simplified for blind injection

How

 Blind Injection : “The question game”

 To recover a number, need to ‘guess’ using yes/no

 For strings, ‘guess’ length & ‘guess’ each character

 Must be repeated for everything in the database

 xcat XPi Version 1 Blind Retrieval

 Guesses numbers by starting from 0 and going up

 Guess characters by starting at ‘a’ and ending at ‘Z’

 Only correct guess returns a valid injection result

 Threaded to speedup slow guessing process

 “You’re doing it wrong”

How

 Search Techniques

 xcat uses a linear search method for blind retrieval

 There are faster search algorithms, implement these

 Determine if XPath 1 has necessary functionality

 Binary Search

 Keeps dividing problem in half until single answer is found

 IE: Is character in the first or second half of the alphabet?

 Requests = ln(size of alphabet), 8 requests for entire ASCII set

 Numerical Binary Conversion

 Convert number to binary and check value of each bit individually

 IE: 56 = 0b00111000, 8 requests to reconstruct numbers <256

How

 XPath has a minimal function set

 No direct method to determine if a character is present in a set

 No method to convert a number to binary, or character to number

 Recreate using SCIENCE

 Binary Search

 Use contains function while dividing set in half until match

 contains([A..Z], character), contains([A..M], character),

contains([A..G], character), contains([A..D], character),

contains([A..B], character), character = ‘A’

 Numerical Binary Reconstruction

 Recreate bit shift/2binary using floor, division and modulus

 for n in range(0,8): bit[n] = floor(number div 2**n) mod 2

How

 Better search algorithms

 Adds code/query complexity

 More difficult to thread

 Need additional XPath 1 functions

 Not present in xcat

 ~6-8x speedup (logarithmic)

 “BUT WAIT, there’s more”

 There are additional tricks to speedup retrieval

 To reach XPath 2 speeds with XPath 1 at no additional cost

 Using patented backend logic and XPath black magic

How

 Improvement: Case Sensitive -> Insensitive Match

 xcat provides a lower-case match for XPath 2 only

 Recreate XPath 2 lower-case() function in XPath 1

 translate(character, [A-Z], [a-z])

 Slight improvement in number of XPath queries (<1%)

 Only efficient for very large databases, not looking for passwords

 Matching case after fact less efficient than just using Binary Search

How

 Improvement: Normalize Whitespace

 Eliminate unnecessary whitespace before reconstruction

 XPath 1: normalize-whitespace(string)

 Eg: [Space] [Space]* = [Space]

 Significant improvement for 'text like' databases (<15%)

How

 Improvement: Maintain Global Count

 Get initial count of each type of node, attribute, text,

comment, processing instruction

 count(//*), count(//@*), count(//comment()),

count(//text()), …

 Decrement count when accessing that type

 Stop accessing that type when count is zero

 Useful for top-heavy documents (comments only at top)

 Slight speed improvement at small cost of initial

requests (1-5%)

 Very useful for documents missing a node type

 5-10% speed improvement for each missing type

How

 Improvement: Eliminate Non-Existent Characters

 Given set of all possible characters, determine if they are present

anywhere in the database using a global search

 for c in [A..Z]: node_exists[c] = count(//*[contains(name(), c)])

 for c in [A..Z]: attr_exists[c] = count(//*@[contains(name(), c)])

 Allows us to shrink our character set to stuff that exists in the DB

 Speedup based on how many characters removed (10-25%)

 Can also be used to identify Unicode and other strange encodings

How

 Improvement: Customized Retrieval

 Using global count improvements we have rough idea of size of

database, number of characters

 For large document we may only want to extract 'interesting' parts

 Skip comments, attributes, text nodes, or limit depth

 Used to get basic idea of database structure for focused attacks

 Variable speedup (10-50%), leads well into the next improvement

How

 Improvement: String Search

 Perform a global search for string

 Extract usernames, passwords, other

sensitive data using optimizations

 //*[contains(.,“admin")]

 //@*[contains(name(),“pass")]

 //text()[contains(.,“secret")]

 Useful for open-source, known

databases and finding credentials

 Takes only as long as it needs

How

 Improvement: Smart Reconstruction

 Useful portion of XML database is unique

 Yet large amount of XML is structure

 XML databases follow a predictable format

 Sibling nodes have similar children

 Use previous node to guess future ones

 Significant speed improvement (80%) for ‘well-formed’ databases

 Done by comparing new data to saved node and attributes values

 Challenges

 Requires knowledge using incomplete XML document

 Additional logic required to prevent speedup inefficiencies

How

 Improvement: Threading

 xcat uses threading across a linear search

 Cannot easily thread advanced searches as they use conditional

statements based on old results for future ones

 Largest amount of time is spent reconstructing strings

 Assign a thread to each character in string reconstruction

 Allows use of all speedup techniques without additional complexity

How

 Future Improvements:

 HTTP Keep Alive

 Keep connections open to prevent round trip TCP setup time

 Retrieval Resume

 Keep information about current reconstruction, allowing restart

 Compare/Update SQLmap

 Compare features/Push XPath techniques back to SQLi

 Namespace checks

 Additional Unicode checks

 So without much further ado

 The tool you’ve been waiting for

How

 xxxpwn : “For when SQLmap isn’t working”

How

 xxxpwn – XPath eXfiltration eXploitation Tool

 Designed for blind XPath 1 injection

 Open source, python, no dependencies

 Almost as fast as fastest XPath 2 techniques

 Also sounds like the title of cool hacker porn

 Running xxxpwn for maximum satisfaction

 xxxpwn.py host port and REQUIRED flags below

 --match MATCH : Keyword to match on successful blind injection

 --inject INJECT_FILE : File containing valid HTTP Request

 $INJECT string in file contains location of injection

 Use --urlencode for GET and --htmlencode for POST requests

 HTTP Host and Content-Length headers are automatically updated

How

 Speedup Improvements implemented as optional flags

 --summary

 --no_{root,comments,values,attributes,etc.}

 --lowercase

 --global_count

 --normalize_space

 --optimize_charset

 --xml_match

 --threads THREADS

 --search SEARCH

 Additional Flags

 IE: --ssl

How

 Adventure Time! (Tool Demo)

Ho-ow

 Retrieval Speed Comparison Results

 xcat version 1 - 82.37 seconds with missing characters & elements

 xcat version 2 - 100.48 seconds with missing root comment

 xxxpwn w/no optimizations - 12.14 seconds with missing Unicode é

 xxxpwn w/all optimizations - 6.16 seconds complete

 xcat autopwn – 5.33 (7.16 with initialization) missing root comment

 Requires XPath 2 & local HTTP server to receive results

Where

 What good is a tool without something to use it on?

Where

 Umbraco

 Described as ‘The open source ASP.NET CMS’

 Discovered by SA team during yearly hackathron

 Vulnerable at /umbraco/dashboard.aspx?app=$INJECTION

 No sensitive information in XML database, POC only

 As long as they don’t update to XPath 2 they will be safe

 Payload provided in xxxpwn

+ =

Where?

 Sitecore 6.0.0.081203 and below

 Described as the ‘Best .NET CMS for ASP.NET’

 Discovered by me during a penetration test, high risk

 SOAP methods at /sitecore/shell/WebService/service.asmx

 Vulnerable to blind XPath injection in <vis:databaseName> field

 Can be used to retrieve database information including

username and password from the Sitecore XML database

 Payload already loaded in xxxpwn

 Demo

When

 xxxpwn available soon on Github

 https://github.com/feakk/xxxpwn

 This presentation will be available on the

SA website after the talk

 http://security-assessment.com/

 I will be around the con for questions

 May require Mario Kart for the answer

 Let me know if you find any vulnerabilities

 With responsible disclosure of course

 Then I can feed them back into xxxpwn

https://github.com/feakk/xxxpwn
http://security-assessment.com/
http://security-assessment.com/
http://security-assessment.com/
http://security-assessment.com/
http://security-assessment.com/

Conclusion

 Security-Assessment.com is hiring, come work for us

Thanks

